Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Shear capacity of composite member of high strength grouted cement paste and steel plate with shear keys
WANG Guo-qing1,2, CHENG Zhuang1, WANG Zhen-yu1, CHEN Feng1, ZHANG Yi1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;2. Zhejiang Provincial Bureau of Energy, Hangzhou 310025, China
Download:   PDF(1742KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Composite member of high strength grouted cement paste and steel plate with shear keys, as a part of grouted tubular connection, was investigated with regards to its shear capacity characteristics by shear tests on four specimens subjected to different initial normal stress. The test results demonstrate that loading process curve of specimens includes three stages, namely elastic stage, cement paste cracking stage and interface friction slipping stage. Grouted cement paste mainly cracks through lines joining shear keys of two steel plates successively. Specimen subjected to larger initial normal stress generally shows higher peak strength. Shearing process of the specimens was numerically simulated using the brittle cracking model. Failure mode and loading process curve of specimens derived from numerically modeling were basically consistent with those acquired from tests.



Published: 10 September 2015
CLC:  TU 398  
Cite this article:

WANG Guo-qing, CHENG Zhuang, WANG Zhen-yu, CHEN Feng, ZHANG Yi. Shear capacity of composite member of high strength grouted cement paste and steel plate with shear keys. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1282-1287.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.07.012     OR     http://www.zjujournals.com/eng/Y2015/V49/I7/1282


带剪力键钢板-高强灌浆体的抗剪承载力

为了研究灌浆套管连接中带剪力键钢板-高强灌浆体的抗剪承载力性能,开展不同初始正应力下4个试件的平板剪切试验.通过试验发现,试件的承载过程包括弹性、灌浆体开裂和界面摩擦滑移3个阶段,灌浆体主要是沿着剪力键之间的连线逐次开裂发展,初始正应力越大,试件的峰值抗剪强度越大.采用脆性开裂模型对试件剪切过程进行数值模拟,计算得到的破坏形态和承载过程曲线与试验结果基本相同.

[1] KLOSE M, FABER T, SCHAUMANN P, et al. Grouted connections for offshore wind turbines [C]∥Proceedings of the 18th International Offshore and Polar Engineering Conference. Vancouver: [s. n.], 2008: 425-430.
[2] LOTSBERG I. Structural mechanics for design of grouted connections in monopile wind turbine structures [J]. Marine Structures, 2013, 32: 113-135.
[3]SCHAUMANN P, LOCHTE-HOLTGREVEN S, BECHTEL A. Fatigue design for axially loaded grouted connections of offshore wind turbine support structures in deeper waters [C]∥ 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments. United States: [s. n.], 2010: 2047-2054.
[4] EN 1993-1-9, Eurocode 3: design of steel structures-Part 1-9: fatigue [S]. Brussels: European Committee for Standardization, 2005.
[5] CEB-FIP, Model Code 1990: Comité Euro-International du Béton [S]. London: Thomas Telford Services Ltd, 1993.
[6] XU Zeng-quan, MAU S T, CHEN Bin. Theory on shear transfer strength of reinforced concrete [J]. ACI Structural Journal, 1987, 84(2): 149-160.
[7] HWANG S J, YU H W, LEE H J. Theory of interface shear capacity of reinforced concrete [J]. Journal of Structural Engineering, 2000, 126(6): 700-707.
[8] GOHNERT M. Proposed theory to determine the horizontal shear between composite precast and in situ concrete [J]. Cement and Concrete Composites, 2000, 22(6): 469-476.
[9] ZILCH K, REINECKE R. Capacity of shear joints between high-strength precast elements and normal-strength cast-in-place decks [C]∥ International Symposium on High Performance Concrete. Orlando: [s, n], 2000: 551-560.
[10] THOMANN M, LEBET J P. A mechanical model for connections by adherence for steel-concrete composite beams [J]. Engineering Structures, 2008, 30(1): 163-173.
[11] CAIRNS J,DU Y,LAW D. Influence of corrosion on the friction characteristics of the steel/concrete interface [J]. Construction and Building Materials, 2007, 21(1): 190-197.
[12] NGO T T, KADRI E H, BENNACER R, et al. Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping [J]. Construction and Building Materials, 2010, 24(7): 1253-1261.
[13] RICHARD B, RAGUENEAU F, CREMONA C, et al. A three-dimensional steel/concrete interface model including corrosion effects [J]. Engineering Fracture Mechanics, 2010, 77(6): 951-973.
[14] LEE Y H,JOO Y T,LEE T, et al. Mechanical properties of constitutive parameters in steel-concrete interface [J].Engineering Structures, 2011, 33(4): 1277-1290.
[15] ARAB A A,BADIE S S,MANZARI M T. A methodological approach for finite element modeling of pretensioned concrete members at the release of pretensioning [J]. Engineering Structures, 2011, 33(6): 1918-1929.
[16] BOUHAROUN S, DE CARO P, DUBOIS I, et al. Effect of a superplasticizer on the properties of the concrete/oil/formwork interface [J]. Construction and Building Materials, 2013, 47: 1137-1144.
[17] KWON S H,PHUNG Q T,PARK H Y,et al. Effect of wall friction on variation of formwork pressure over time in self-consolidating concrete [J]. Cement and Concrete Research, 2011, 41(1): 90-101.
[18] KITOH H, SONODA K. Bond characteristics of embossed steel elements [C]∥ Proceedings of an Engineering Foundation Conference. New York: ASCE, 1996.
[19] THOMANN M, LEBET J P. The modeling of an embossed steel-to-paste confined interface loaded in shear [J]. Journal of Constructional Steel Research, 2007, 63(5): 639-646.
[20]王金昌,陈页开. ABAQUS在土木工程中的应用[M]. 杭州:浙江大学出版社,2006.24.

[1] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1463-1470.
[2] HE Guang hui, WANG De jiang, YANG Xiao. Static bending of higher order composite beams considering interfacial incompressibility:displacement and hybrid based finite element analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1716-1724.
[3] SU Ning-fen, LV Xi-lin, ZHOU Ying, QI Hu. Seismic behavior of super-tall building with setbacks in elevation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(10): 1893-1899.
[4] OUYANG Wen-xin, WANG Qing-yuan, SHI Xiao-shuang, TAN Lian-fei, PENG Ze-wei. Fatigue test and analysis of PBL shear connectors[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(6): 1090-1096.
[5] WANG Zhen-Hua, DONG Dan-Lin, TIAN Wei, YUAN Hang-Fei. Experimental research on a composite structure combined of
cable dome and single-layer lattice shell
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1608-1614.