Please wait a minute...
J4  2010, Vol. 44 Issue (7): 1373-1376    DOI: 10.3785/j.issn.1008973X.2010.07.025
    
Adaptive control for intelligent lower limb prosthesis based on
neural network
MA Yu-liang1, XU Wen-liang1, MENG Ming1, LUO Zhi-zeng1, YANG Jia-qiang2
1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; 2. College of Electrical Engineering,
Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The knee joint of lower limb prosthesis is a damp system with high nonlinearity, timevarying and strong coupling, and the traditional control method can hardly achieve good performance. Aimed at the problem, a neural network (NN)based model reference adaptive control method was proposed based on the learning vector quantization (LVQ) neural network. Based on an appropriate reference model and an adaptive algorithm, the current control variable was calculated by using the error between the reference model output and the actual system output in order to control the intelligent lowerlimb prosthesis and achieve the adaptive control. The method does not require the transformation of performance criteria, and is fast and easy to implement. Simulation results showed the validity of the method.



Published: 01 July 2010
CLC:  TP 13  
  TP 183  
Cite this article:

MA Yu-Liang, XU Wen-Liang, MENG Meng, LUO Zhi-Ceng, YANG Jia-Jiang. Adaptive control for intelligent lower limb prosthesis based on
neural network. J4, 2010, 44(7): 1373-1376.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2010.07.025     OR     http://www.zjujournals.com/eng/Y2010/V44/I7/1373


基于神经网络的智能下肢假肢自适应控制

下肢假肢的膝关节是一种具有高度非线性、时变、强耦合的阻尼系统,传统控制方法很难达到良好控制效果.针对这一问题,提出将神经网络(NN)应用于下肢假肢控制.以学习矢量量化(LVQ)神经网络为基础,提出神经网络模型参考自适应控制方法.该方法通过选择适当的参考模型和自适应算法,利用参考模型输出与实际系统输出之间的误差信号,由自适应算法计算当前的控制量以控制智能下肢假肢,达到自适应控制的目的.该方法不需要进行性能指标的变换,容易实现且自适应速度快,仿真结果表明了该方法的有效性.

[1] GONG Siyuan, YANG Peng, SONG Liang, et al. Study on development platform of active lowerlimb prosthesis based on MATLAB [C]∥ Proceedings of the 20th Chinese Control and Decision Conference. Yantai, China: IEEE, 2008: 35423545.
[2] 贺光辉,谭冠政,曾庆东,等.智能仿生人工腿位置伺服控制系统的设计[J].计算机测量与控制,2007,15(1): 5255.
HE Guanghui, TAN Guanzheng, ZENG Qingdong, et al. Study and design of position servo control system of intelligent bionic artificial leg [J]. Computer Measurement and Control, 2007, 15(1): 5255.
[3] 王人成,沈强,金德闻.假肢智能膝关节研究进展[J].康复医学工程,2007,22(12): 10931094.
WANG Rencheng, SHEN Qiang, JIN Dewen. Research development of intelligent knee prosthesis [J]. Chinese Journal of Rehabilitation Medicine, 2007, 22(12): 10931094.
[4] 杨义勇,王人成,王延利,等.新型仿生膝关节的机构设计与仿真研究[J].中国机械工程,2008, 19(1): 7274.
YANG Yiyong, WANG Rencheng, WANG Yanli, et al. Humanoid design and movement and simulation of a new knee prosthesis [J]. China Mechanical Engineering, 2008, 19(1): 7274.
[5] ATSUO O, GORO O, KAZUNORI H, et al. Design of lower limb prosthesis with contact pressure adjustment by MR fluid [C]∥ Proceedings of the 30th Annual International IEEE EMBS Conference. Vancouver, Canada: IEEE, 2008: 330333.
[6] POPOVIC D B, OGUZTORELI M N, STEIN R B. Optimal control for an active aboveknee prosthesis with two degrees of freedom [J]. Journal of Biomech, 1995, 28(1): 8998.
[7] DANIEL Z, BEATRICE S, GERHARD S. Finitestate control of a transfemoral (TF) [J]. IEEE Transactions on Control Systems Technology, 2002, 10(3): 408420.
[8] POPOVIC D B, TOMOVIC R, TEPAVAC D. Control aspects of active aboveknee prosthesis [J]. International Journal of ManMachine Studies, 1991, 35(6): 751767.
[9] VOJISLAV D K, DEJAN P. Feedback error learning neural network for transfemoral prosthesis [J].IEEE Transactions on Rehabilitation Engineering, 2000, 8(1): 7180.
[10] KOSTOV A, ANDREWS B J, POPOVIC D B, et al. Machine learning in control of functional electrical stimulation systems for locomotion[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(6): 541551.
[11] SANNER R M, SLOTINE J E. Stable adaptive control and recursive identification using radial Gaussian networks [C]∥ Proceedings of IEEE Conference on Decision and Control. Brighton: IEEE, 1991: 21162123.
[12] KOHONEN T. Selforganization and associative memory [M]. Berlin: SpringerVerlag, 1995: 8896.
[13] 黄永安,李文成,高小科.Matlab7.0/Simulink6.0应用实例仿真与高效算法开发[M].北京:清华大学出版社,2008: 440448.
[14] 徐文良.智能下肢假肢的多运动模式自适应控制[D].杭州:杭州电子科技大学,2010: 5559.
XU Wenliang. Multimotion model adaptive control of intelligent lower limb prosthesis [D]. Hangzhou: Hangzhou Dianzi University, 2010: 5559.

[1] LOU Ke, QI Bin, MU Wen-ying, CUI Bao-tong. Flocking control of multiple agents based on feedback control strategy[J]. J4, 2013, 47(10): 1758-1763.
[2] LI Li-juan, XIONG Lu, LIU Jun, XU Ou-guan. Multi-model predictive control based on AP-LSSVM[J]. J4, 2013, 47(10): 1741-1746.
[3] MAO Wei-jie, ZHANG Yuan-yuan. Stability analysis for neutral systems with interval time-varying delays[J]. J4, 2012, 46(5): 848-852.
[4] CUI Li-li, ZHANG Hua-guang, LUO Yan-hong. Adaptive critic design of nonlinear system with unknown control direction[J]. J4, 2012, 46(5): 853-857.
[5] WANG Li-juan, ZHANG Hui. On parameter identifiability of linear multivariable systems under
communication access constraints
[J]. J4, 2011, 45(12): 2103-2108.
[6] NI He, XIAO Hang, CHENG Gang, SUN Feng-rui. Optimization of load controller for steam power plant using
evolutionary algorithm and chaos
[J]. J4, 2011, 45(12): 2202-2207.
[7] ZHAO Li-li, LI Ping, LI Xiu-liang. Design of adaptive observer with forgetting factor for linear system[J]. J4, 2011, 45(10): 1704-1709.
[8] BO Hai-Feng, LV Yong-Song. Fuzzy neural network control method with compensation
for time-delay system
[J]. J4, 2010, 44(7): 1343-1347.
[9] JU Hong-Bei, FANG Shan-Hua, LU Ren-Quan, XUE An-Ke. Design of quantized state estimator for dualstage control system[J]. J4, 2010, 44(7): 1428-1432.
[10] WANG Dun-Hong, XUE An-Ke. Output feedback control for timedelay system with
quantized measurement
[J]. J4, 2010, 44(7): 1418-1422.
[11] XIE Bin, ZHANG Kai-Dan, BO Hua-Dong, et al. Hospitability map building and ground target tracking with UAV under unknown environments[J]. J4, 2010, 44(1): 118-123.