Adaptive control for intelligent lower limb prosthesis based on
neural network
MA Yu-liang1, XU Wen-liang1, MENG Ming1, LUO Zhi-zeng1, YANG Jia-qiang2
1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; 2. College of Electrical Engineering,
Zhejiang University, Hangzhou 310027, China
The knee joint of lower limb prosthesis is a damp system with high nonlinearity, timevarying and strong coupling, and the traditional control method can hardly achieve good performance. Aimed at the problem, a neural network (NN)based model reference adaptive control method was proposed based on the learning vector quantization (LVQ) neural network. Based on an appropriate reference model and an adaptive algorithm, the current control variable was calculated by using the error between the reference model output and the actual system output in order to control the intelligent lowerlimb prosthesis and achieve the adaptive control. The method does not require the transformation of performance criteria, and is fast and easy to implement. Simulation results showed the validity of the method.
MA Yu-Liang, XU Wen-Liang, MENG Meng, LUO Zhi-Ceng, YANG Jia-Jiang. Adaptive control for intelligent lower limb prosthesis based on
neural network. J4, 2010, 44(7): 1373-1376.
[1] GONG Siyuan, YANG Peng, SONG Liang, et al. Study on development platform of active lowerlimb prosthesis based on MATLAB [C]∥ Proceedings of the 20th Chinese Control and Decision Conference. Yantai, China: IEEE, 2008: 35423545.
[2] 贺光辉,谭冠政,曾庆东,等.智能仿生人工腿位置伺服控制系统的设计[J].计算机测量与控制,2007,15(1): 5255.
HE Guanghui, TAN Guanzheng, ZENG Qingdong, et al. Study and design of position servo control system of intelligent bionic artificial leg [J]. Computer Measurement and Control, 2007, 15(1): 5255.
[3] 王人成,沈强,金德闻.假肢智能膝关节研究进展[J].康复医学工程,2007,22(12): 10931094.
WANG Rencheng, SHEN Qiang, JIN Dewen. Research development of intelligent knee prosthesis [J]. Chinese Journal of Rehabilitation Medicine, 2007, 22(12): 10931094.
[4] 杨义勇,王人成,王延利,等.新型仿生膝关节的机构设计与仿真研究[J].中国机械工程,2008, 19(1): 7274.
YANG Yiyong, WANG Rencheng, WANG Yanli, et al. Humanoid design and movement and simulation of a new knee prosthesis [J]. China Mechanical Engineering, 2008, 19(1): 7274.
[5] ATSUO O, GORO O, KAZUNORI H, et al. Design of lower limb prosthesis with contact pressure adjustment by MR fluid [C]∥ Proceedings of the 30th Annual International IEEE EMBS Conference. Vancouver, Canada: IEEE, 2008: 330333.
[6] POPOVIC D B, OGUZTORELI M N, STEIN R B. Optimal control for an active aboveknee prosthesis with two degrees of freedom [J]. Journal of Biomech, 1995, 28(1): 8998.
[7] DANIEL Z, BEATRICE S, GERHARD S. Finitestate control of a transfemoral (TF) [J]. IEEE Transactions on Control Systems Technology, 2002, 10(3): 408420.
[8] POPOVIC D B, TOMOVIC R, TEPAVAC D. Control aspects of active aboveknee prosthesis [J]. International Journal of ManMachine Studies, 1991, 35(6): 751767.
[9] VOJISLAV D K, DEJAN P. Feedback error learning neural network for transfemoral prosthesis [J].IEEE Transactions on Rehabilitation Engineering, 2000, 8(1): 7180.
[10] KOSTOV A, ANDREWS B J, POPOVIC D B, et al. Machine learning in control of functional electrical stimulation systems for locomotion[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(6): 541551.
[11] SANNER R M, SLOTINE J E. Stable adaptive control and recursive identification using radial Gaussian networks [C]∥ Proceedings of IEEE Conference on Decision and Control. Brighton: IEEE, 1991: 21162123.
[12] KOHONEN T. Selforganization and associative memory [M]. Berlin: SpringerVerlag, 1995: 8896.
[13] 黄永安,李文成,高小科.Matlab7.0/Simulink6.0应用实例仿真与高效算法开发[M].北京:清华大学出版社,2008: 440448.
[14] 徐文良.智能下肢假肢的多运动模式自适应控制[D].杭州:杭州电子科技大学,2010: 5559.
XU Wenliang. Multimotion model adaptive control of intelligent lower limb prosthesis [D]. Hangzhou: Hangzhou Dianzi University, 2010: 5559.