Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 742-749    DOI: 10.3785/j.issn.1008-973X.2021.04.017
    
Blade cavitation control by obstacles in axial-flow pump
Guo-shou ZHAO1(),Rui WU1,2,Bang-xiang CHE3,Lin-lin CAO1,*(),Da-zhuan WU1,4
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China
2. Shanghai Ship and Shipping Research Institute, Shanghai 200135, China
3. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1631KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A pair of parallel obstacle bars on the suction surface of pump blade was designed based on previous investigations on hydrofoil cavitation control and cavitation mechanism of this pump in order to control cavitation in an axial-flow pump. The cavitation experiments and numerical simulation were conducted to examine the control effects and reveal the control mechanism. Results show that the raised pressure around the leading edge by the obstacle can effectively depress blade cavitation generation and development although the hydraulic efficiency is inevitably affected and degrades 5.6% at the design point. The shear cavitation is triggered by the obstacles, which is more capable to resist the cavitation instabilities caused by inflow perturbations considering the generation mechanism and cavitation position.



Key wordsaxial-flow pump      obstacles      cavitation control      water tunnel experiment     
Received: 28 April 2020      Published: 07 May 2021
CLC:  TH 312  
Fund:  喷水推进技术重点实验室基金资助项目(6142223180107)
Corresponding Authors: Lin-lin CAO     E-mail: zgszju@zju.edu.cn;caolinlin@zju.edu.cn
Cite this article:

Guo-shou ZHAO,Rui WU,Bang-xiang CHE,Lin-lin CAO,Da-zhuan WU. Blade cavitation control by obstacles in axial-flow pump. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 742-749.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.017     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/742


基于障碍物的轴流泵叶片空化控制

基于前期水翼云空化控制与轴流泵空化机理的研究成果,面向轴流泵叶片的空化控制,设计并列障碍物条放置于叶片吸力面特定位置. 采用数值模拟与水洞实验方法,研究障碍物的空化控制效果与机理. 结果表明,障碍物虽然对泵的水力效率造成一定影响,在设计点效率下降5.6%,但诱发的前部高压可以有效控制叶片前缘片状空化的产生与发展. 障碍物自身诱发了一定程度的剪切空化团,因与前缘空化产生机理与位置不同,剪切空化具备较强的抗扰动能力,能够有效抵抗来流干扰引起的空化不稳定性.


关键词: 轴流泵,  障碍物,  空化控制,  水洞试验 
参数 给定值
叶轮直径D/m 0.2
轮毂比 0.35
叶轮叶片数ZR 7
导叶叶片数ZS 11
叶顶间隙/mm 0.95
设计转速n/(r·min?1) 1 260
设计流量Q0/(m3·s?1) 0.108
设计扬程H/m 1.0
水密度ρ(105 Pa,25 °C)/( kg·m?3) 997
重力加速度g/(m·s?2) 9.81
水饱和蒸汽压pv(25 °C)/Pa 3 169
Tab.1 Pump design and operation parameters
Fig.1 Pump test system
Fig.2 Configuration and profile of obstacles
Fig.3 Manufacture of obstacle impeller
Fig.4 Whole computaional domain
Fig.5 Generation of impeller mesh
Fig.6 y+ distribution
Fig.7 Hydraulic performance curves of pump
Fig.8 Cavitation performance curves of pump
Fig.9 Average and standard deviation of image phases in cavitation developing stage Ⅰ
Fig.11 Average and standard deviation of image phases in cavitation developing stage Ⅲ
Fig.10 Average and standard deviation of image phases in cavitation developing stage Ⅱ
Fig.12 Loading distribution on blade spans
Fig.13 TKE distribution on blade spans
Fig.14 Pressure monitoring points on impeller
Fig.15 Pressures in time domain
Fig.16 Pressures in frequency domain
[1]   BRENNEN C E. Hydrodynamics of pumps [M]. Cambridge: Cambridge University Press, 2011.
[2]   潘中永, 关醒凡 泵诱导轮理论与设计[J]. 农业机械学报, 2000, 31 (5): 45- 47
PAN Zhong-yong, GUAN Xing-fan Theory and design of a pump inducer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2000, 31 (5): 45- 47
doi: 10.3969/j.issn.1000-1298.2000.05.013
[3]   胡雷俊, 曹琳琳, 车邦祥, 等 基于高空化性能的对转泵喷推进器设计[J]. 工程热物理学报, 2017, 38 (9): 1877- 1881
HU Lei-jun, CAO Lin-lin, CHE Bang-xiang, et al Design of contra rotating waterjet pump based on high cavitation performances[J]. Journal of Engineering Thermophysics, 2017, 38 (9): 1877- 1881
[4]   吴昱, 朱祖超 利用引射结构提高离心泵的汽蚀性能[J]. 工程设计学报, 2002, 9 (2): 86- 88
WU Yu, ZHU Zu-chao Using jetting equipment to improve the suction performance of centrifugal pump[J]. Engineering Design, 2002, 9 (2): 86- 88
doi: 10.3785/j.issn.1006-754X.2002.02.009
[5]   HORIGUCHI H, WATANABE S, TSUJIMOTO Y Theoretical analysis of cavitation in inducers with unequal blades with alternate leading edge cutback: partⅠ-analytical methods and the results for smaller amount of cutback[J]. Journal of Fluids Engineering, 2000, 122 (2): 412- 418
doi: 10.1115/1.483271
[6]   SHIMIYA N, FUJII A, HORIGUCHI H, et al Suppression of cavitation instabilities in an inducer by J groove[J]. Journal of Fluids Engineering, 2008, 130: 021302
doi: 10.1115/1.2829582
[7]   KIM J H, ISHZAKA K, WATANABE S, et al Cavitation surge suppression of pump inducer with axi-asymmetrical inlet plate[J]. International Journal of Fluid Machinery and System, 2010, 3 (1): 50- 57
doi: 10.5293/IJFMS.2010.3.1.050
[8]   朱兵. 缝隙引流叶片提高低比转速离心泵性能的机理研究 [D]. 上海: 上海大学, 2016.
ZHU Bing. Research on the mechanism of performance improving in low specific speed centrifugal pump with gap drainage blades [D]. Shanghai: Shanghai University, 2016.
[9]   王洋, 谢山峰, 王维军, 等 开缝叶片低比转数离心泵空化性能的数值模拟[J]. 排灌机械工程学报, 2016, 34 (3): 210- 215
WANG Yang, XIE Shan-feng, WANG Wei-jun, et al Numerical simulation of cavitation performance of low specific speed centrifugal pump with slotted blades[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (3): 210- 215
doi: 10.3969/j.issn.1674-8530.15.0114
[10]   赵伟国, 赵国寿, 咸丽霞, 等 离心泵叶片表面布置障碍物抑制空化的数值模拟与实验[J]. 农业机械学报, 2017, 48 (9): 111- 120
ZHAO Wei-guo, ZHAO Guo-shou, XIAN Li-xia, et al Effect of surface-fitted obstacle in centrifugal pump on cavitation suppression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (9): 111- 120
doi: 10.6041/j.issn.1000-1298.2017.09.014
[11]   张睿. 轴流泵失速和空化流动特性及其性能改善研究[D]. 上海: 上海大学, 2014.
ZHANG Rui. Research on the stall and cavitation flow characteristics and the performance improvement of axial-flow pump [D]. Shanghai: Shanghai University, 2014.
[12]   CHE B X, CAO L L, CHU N, et al Effect of obstacle position on attached cavitation control through response surface methodology[J]. Journal of Mechanical Science and Technology, 2019, 33 (9): 4265- 4279
doi: 10.1007/s12206-019-0823-y
[13]   MENTER F R Two-Equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32 (8): 269- 289
[1] ZHANG De sheng, SHI Lei, CHEN Jian, PAN Qiang, SHI Wei dong. Experimental analysis on characteristic of cavitation in tip region of axial flow pump impeller[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1585-1592.