Computer Science and Artificial Intelligence |
|
|
|
|
Analysis on predictability of urban point-of-interest evolution |
Qi-long WU( ),Zhi-wen YU*( ),Xin-jiang LU,Bin GUO |
School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China |
|
|
Abstract A PLCPA model was established to describe the predictability of urban point-of-interest evolution. Based on the change of urban interest points in continuous time window, a definition of the life cycle length and life cycle status was given and the predictability of point-of-interest evolution was analyzed. Fano’s inequality was combined with the life cycle length and status of urban point-of-interest to quantify the predictability of the evolution of urban point-of-interest. And the predictability calculation of life cycle length and status of urban point-of-interest was given based on the information uncertainty measure in the information theory. The predictability of different categories of point-of-interest with different levels of granularity was calculated according to the urban point-of-interest data of seven cities. Results show that the life cycle of urban interest points is predictable; the predictabilities of different categories of point-of-interest are quite different; the predictability of the points-of-interest in the decaying status is higher than that of the stable status and the booming status.
|
Received: 17 December 2018
Published: 12 September 2019
|
|
Corresponding Authors:
Zhi-wen YU
E-mail: 2014302721@mail.nwpu.edu.cn;zhiwenyu@nwpu.edu.cn
|
城市兴趣点演化规律的可预测性分析
建立兴趣点生命周期可预测性模型来刻画城市兴趣点演化规律的可预测性. 该模型针对城市兴趣点在连续时间窗口的变化情况,给出其生命周期长度和生命周期状态的定义,分析兴趣点在演化过程中的可预测性. 为量化城市兴趣点演化规律的可预测性,将城市兴趣点的生命周期长度和生命周期状态的信息熵同Fano不等式相结合,基于信息论中信息的不确定性度量方法给出城市兴趣点生命周期长度和生命周期状态的可预测性计算方法,并结合7个城市的城市兴趣点数据,计算出不同粒度、不同类别的兴趣点的可预测性. 结果表明:城市兴趣点的生命周期是可预测的且不同类别兴趣点的可预测性差异较大;相对于稳定状态和爆发状态的兴趣点,处于消亡状态的兴趣点的可预测性更高.
关键词:
城市兴趣点,
可预测性,
信息熵,
Fano不等式
|
|
[1] |
WANG J, LI C, XIONG Z, et al Survey of data-centric smart city[J]. Journal of Computer Research and De-velopment, 2014, 51 (2): 239- 259
|
|
|
[2] |
YUAN Q, CONG G, MA Z, et al. Time-aware point-of-interest recommendation [C] // Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2013: 363–372.
|
|
|
[3] |
吕琳媛 复杂网络链路预测[J]. 电子科技大学学报, 2010, 39 (5): 651- 661 LV Lin-yuan Link Prediction on complex networks[J]. Journal of University of Electronic Science and Technology of China, 2010, 39 (5): 651- 661
|
|
|
[4] |
KENNEDY L S, NAAMAN M. Generating diverse and representative image search results for landmarks [C] // Proceedings of the 17th International Conference on World Wide Web. Beijing: ACM, 2008: 297–306.
|
|
|
[5] |
LIAN D, ZHAO C, XIE X, et al. GeoMF: joint geograph-ical modeling and matrix factorization for Point-of-Interest recommendation [C] // ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 831–840.
|
|
|
[6] |
CHENG C, YANG H, LYU M R, et al. Where you like to go next: successive Point-of-Interest recommendation [C] // International Joint Conference on Artificial Intelligence. Beijing: IJCAI. 2013: 2605–2611.
|
|
|
[7] |
ZHAO W, LI Q, LI B Extracting hierarchical landmarks from urban POI data[J]. Yaogan Xuebao: Journal of Remote Sensing, 2011, 15 (5): 973- 988
|
|
|
[8] |
方斌, 张宪, 杨柳 基于 POI 数据的城市边界变化提取研究——以山西运城市城区为例[J]. 现代测绘, 2017, 40 (5): 20- 22 FANG Bin, ZHANG Xian, YANG Liu Study on urban boundary identification based on POI: a case study of Yuncheng City in Shanxi[J]. Modern Surveying and Mapping, 2017, 40 (5): 20- 22
|
|
|
[9] |
禹文豪, 艾廷华, 刘鹏程, 等 设施 POI 分布热点分析的网络核密度估计方法[J]. 测绘学报, 2015, 44 (12): 1378- 1383 YU Wen-hao, AI Ting-hua, LIU Peng-cheng, et al Network kernel density estimation for the analysis of facility POI hotspots[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44 (12): 1378- 1383
|
|
|
[10] |
YUAN J, ZHENG Y, ZHANG L, et al. Where to find my next passenger [C] // Proceedings of the 13th International Conference on Ubiquitous Computing. Beijing: ACM, 2011: 109–118.
|
|
|
[11] |
YU G, YUAN J, LIU Z. Predicting human activities using spatio-temporal structure of interest points [C] // Proceed-ings of the 20th ACM International Conference on Multimedia. Nara: ACM, 2012: 1049–1052.
|
|
|
[12] |
LU X, YU Z, SUN L, et al. Characterizing the life cycle of point of interests using human mobility patterns [C] // Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Heidelberg: ACM, 2016: 1052–1063.
|
|
|
[13] |
LU X, YU Z, LIU C, et al. Forecasting the rise and fall of volatile point-of-interests [C] // 2017 IEEE International Conference on Big Data. Boston: IEEE, 2017: 1307–1312.
|
|
|
[14] |
BIALEK W, NEMENMAN I, TISHBY N Predictability, complexity, and learning[J]. Neural Computation, 2001, 13 (11): 2409- 2463
|
|
|
[15] |
ANG A, BEKAERT G Stock return predictability:Is it there?[J]. The Review of Financial Studies, 2006, 20 (3): 651- 707
|
|
|
[16] |
SONG C, QU Z, BLUMM N, et al Limits of predictability in human mobility[J]. Science, 2010, 327 (5968): 1018- 1021
|
|
|
[17] |
胡伟.改革开放40年中国工业经济发展的区域特征[J/OL].区域经济评论, 2019(1):1–15[2019-01-24]. Https://doi.org/10.14017/j.cnki.2095-5766.2019.0017. HU Wei. Regional characteristics of China's industrial economic development in the 40 years of reform and openin up [J/OL]. Regional Economic Review, 2019(1): 1–15 [2019-01-24]. Https://doi.org/10.14017/j.cnki.2095-5766.2019.0017.
|
|
|
[18] |
QIN S M, VERKASALO H, MOHTASCHEMI M, et al Patterns, entropy, and predictability of human mobility and life[J]. PLoS One, 2012, 7 (12): e51353
|
|
|
[19] |
SINATRA R, SZELL M Entropy and the predictability of online life[J]. Entropy, 2014, 16 (1): 543- 556
|
|
|
[20] |
NAVET N, CHEN S H. On predictability and profitability: would gp induced trading rules be sensitive to the observed entropy of time series? [M] // Natural Computing in Computational Finance. Berlin Heidelberg: Springer, 2008: 197-210.
|
|
|
[21] |
AARONSON J, PARK K K. Predictability, entropy and information of infinite transformations [J]. arXiv preprint arXiv: 0705.2148, 2007.
|
|
|
[22] |
DELSOLE T Predictability and information theory. Part I: measures of predictability[J]. Journal of the Atmospheric Sciences, 2004, 61 (20): 2425- 2440
|
|
|
[23] |
BOLTZMANN L. Lectures on gas theory [M]. Chelmsford: Courier Corporation, 2012: 34.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|