Seismic fragility analysis of multi-storey frame structure considering effect of valley terrain
Bo HUANG1,2(),Kai-long LIAO1,2,Yu ZHAO1,2,*(),Jian-qun JIANG3
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China 3. Institute of Hydraulic Structure and Water Environment, Zhejiang University, Hangzhou 310058, China
The seismic fragility curves of multi-storey frame structures suitable for Hangjiahu area were given based on dynamic time history analysis and probability statistics method combining with the local soil engineering characteristics and the fact of seismic fortification zones in view of the special situation that the scouring and silting valley topography is widely distributed in Hangjiahu area. The dynamic analysis results of multi-storey frame structures without considering foundation, homogeneous foundation and River Valley Foundation were compared. Results show that soil-structures dynamic interaction has a significant influence on the dynamic analysis results of structures. The deformation and the exceeding probability of fragility performance level of buildings were underestimated without considering soil-structures dynamic interaction. The deviation can reach 7.9%, which will lead to a dangerous result. The unique focusing effect of local valley topography on seismic waves will increase the structural deformation. The exceeding probability of seismic vulnerability can increase by 12.1% compared with homogeneous foundation, and the focusing effect is different at different locations of the valley. Under the selected seismic wave input, the closer the building structure is to the center of the valley, the greater the structural deformation and the greater the probability of exceeding the seismic fragility are.
Bo HUANG,Kai-long LIAO,Yu ZHAO,Jian-qun JIANG. Seismic fragility analysis of multi-storey frame structure considering effect of valley terrain. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 692-701.
Fig.3Acceleration time history curve of surface center point
地震名称
年份
Ms
R/km
EL Centro
1979
6.6
2.5
Chichi
1999
7.6
7.3
Taft
1952
7.4
41.0
Kobe
1995
6.9
15.5
Loma Prieta1
1989
6.9
70.4
Loma Prieta2
1989
6.9
28.6
Loma Prieta3
1989
6.9
35.5
Northridge1
1994
6.7
7.1
Northridge2
1994
6.7
6.2
Whittier Narrows
1987
5.3
4.4
Coalinga
1983
6.0
10.0
Kocaeli
1999
7.4
67.5
Mammoth Lake
1980
4.9
7.5
San Fernando
1971
6.6
12.0
Coyote
1979
5.7
12.6
Nahanni
1985
6.8
6.0
Duzce
1999
7.2
8.2
Cape Mendocino
1992
7.1
9.5
Tab.2List of earthquake records
Fig.4Response spectrum of 18 seismic waves
Fig.5Acceleration time history curve of homogeneous foundation model at ground and base
Fig.6Acceleration fourier spectrum of homogeneous foundation model at ground and base
Fig.7Acceleration response spectral ratio of homogeneous foundation and valley foundation model at bottom of column
Fig.8Structural deformation curve
Fig.9Seismic fragility curves considering local valley terrain
Fig.10Exceedance probability increase of local valley terrain
[1]
朱健. 结构动力学原理与地震易损性分析[M]. 北京: 科学出版社, 2013.
[2]
郭迅 汶川大地震震害特点与成因分析[J]. 地震工程与工程振动, 2009, 29 (6): 74- 87 GUO Xun Characteristics and mechanism analysis of the Great Wen Chuan Earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29 (6): 74- 87
[3]
尚守平, 贺志文, 王海东, 等 上部结构与地基相对刚度比对土-结构体系基频影响试验研究[J]. 地震工程与工程振动, 2008, 28 (05): 94- 101 SHANG Shou-ping, HE Zhi-wen, WANG Hai-dong, et al Experimental investigation on the effect of the relative stiffness ratio between superstructure and ground soil on the fundamental frequency of soil-structure system[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28 (05): 94- 101
[4]
PANZERA F, LOMBARDO G, MONACO C, et al Seismic site effects observed on sediments and basaltic lavas outcropping in a test site of Catania, Italy[J]. Natural Hazards, 2015, 79 (1): 1- 27
[5]
TAFAZZOLI N, BAZIAR M H. Evaluation of basin effect on ground motion [C] // 4th International Conference on Geotechnical Earthquake Engineering. Thessaloniki, Greece: Aristotle University of Thessaloniki Greece, 2007: 1323.
[6]
金峰, 张楚汉 半椭圆形河谷上沉积层地震响应研究[J]. 清华大学学报: 自然科学版, 1993, 33 (05): 23- 30 JIN Feng, ZHANG Chu-han Seismic response of sedimentary layers in semi-oval valley[J]. Journal of Tsinghua University: Science and Technology, 1993, 33 (05): 23- 30
[7]
尤红兵, 赵凤新, 李方杰 层状场地中任意形状沉积河谷对平面SH波的散射[J]. 防灾减灾工程学报, 2008, 28 (3): 313- 318 YOU Hong-bing, ZHAO Feng-xin, LI Fang-jie Scattering of planar SH waves by arbitrary shaped sediments in a layered field[J]. Journal of Disaster Prevention and Mitigation Engineering, 2008, 28 (3): 313- 318
[8]
刘晶波, 刘阳冰, 闫秋实, 等 基于性能的方钢管混凝土框架结构地震易损性分析[J]. 土木工程学报, 2010, 43 (02): 39- 47 LIU Jing-bo, LIU Yang-bing, YAN Qiu-shi, et al Performance-based seismic fragility analysis of CFST frame structures[J]. China Civil Engineering Journal, 2010, 43 (02): 39- 47
[9]
刘阳冰, 刘晶波. 基于性能的组合结构的地震易损性分析[C] // 全国土木工程研究生学术论坛. 北京: 中国土木工程学会, 2008. LIU Yang-bing, LIU Jing-bo. Seismic fragility analysis of composite structures based on performance [C] // National Civil Engineering Forum for Graduate Students. Beijing: CSCE, 2008.
[10]
CELIK O C, ELLINGWOOD B R Seismic fragilities for non-ductile reinforced concrete frames: role of aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32 (1): 1- 12
[11]
PARK J, KIM J Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column[J]. Engineering Structures, 2010, 32 (6): 1547- 1555
[12]
葛立勇 新版《中国地震波参数区划图》简介及对浙江省的影响[J]. 浙江建筑, 2017, 34 (03): 26- 28 GE Li-yong Influence of the brief introduction of the new edition of《Zoning Map of the Seismic Parameters of China》[J]. Zhejiang Construction, 2017, 34 (03): 26- 28
[13]
施炜, 叶列平, 陆新征, 等 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28 (3): 41- 48 SHI Wei, YE Lie-ping, LU Xin-zheng, et al Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28 (3): 41- 48
[14]
陆新征, 叶列平, 缪志伟. 建筑抗震弹塑性分析[M]. 北京: 中国建筑工业出版社, 2015.
[15]
高向玲, 张业树, 李杰 基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟[J]. 结构工程师, 2013, 29 (06): 19- 26 GAO Xiang-ling, ZHANG Ye-shu, LI Jie Numerical simulation of a RC frame based on abaqus beam elements[J]. Structural Engineers, 2013, 29 (06): 19- 26
[16]
张亚旭, 王修信, 庄海洋 土-桩-框架结构非线性相互作用的精细数值模型及其验证[J]. 防灾减灾工程学报, 2010, 30 (5): 558- 566 ZHANG Ya-xu, WANG Xiu-xin, ZHUANG Hai-yang The fine numerical model of soil-pile-frame structure nonlinear interaction and its verification[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30 (5): 558- 566
[17]
褚浩存 嵌固部位柱钢筋的施工工艺[J]. 建筑工人, 2016, 37 (04): 4- 5 CHU Hao-cun Construction process of reinforced steel bar embedded in site[J]. Construction Workers, 2016, 37 (04): 4- 5
[18]
庄海洋, 于旭. 土-桩-隔震结构动力相互作用[M]. 北京: 中国建筑工业出版社, 2016.
[19]
蔡伟忠, 周金龙, 张远芳, 等 嘉兴市软弱地基工程特性及桩基持力层评价[J]. 新疆农业大学学报, 2011, 34 (4): 353- 357 CAI Wei-zhong, ZHOU Jin-long, ZHANG Yuan-fang, et al Evaluation on features of soft foundation engineering andbearing layer of pile in Jiaxing city[J]. Journal of Xinjiang Agricultural University, 2011, 34 (4): 353- 357
[20]
费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010.
[21]
HUDSON M, IDRISS I M, BEIKAE M. User manual for QUAD4m: a computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base [D]. Berkeley: University of California, 1994.
[22]
NEJATI H R, AHMADI M, HASHEMOLHOSSEINI H Numerical analysis of ground surface vibration induced by underground train movement[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2012, 29 (5): 1- 9
[23]
黄宗明, 白绍良, 赖明 结构地震反应时程分析中的阻尼问题评述[J]. 地震工程与工程振动, 1996, (2): 95- 105 HUANG Zong-ming, BAI Shao-liang, LAI Ming Comments on damping in structural seismic response time analysis[J]. Journal of Earthquake Engineering and Engineering Vibration, 1996, (2): 95- 105
[24]
邹德高, 徐斌, 孔宪京 瑞利阻尼系数确定方法对高土石坝地震反应的影响研究[J]. 岩土力学, 2011, 32 (03): 797- 803 ZOU De-gao, XU Bin, KONG Xian-jing Study of influence of different methods for calculating Rayleigh damping coefficient on high earth-rock dam seismic response[J]. Rock and Soil Mechanics, 2011, 32 (03): 797- 803
[25]
李哲, 王贡献, 胡勇, 等 改进的瑞利阻尼系数计算方法在岸桥结构地震反应分析中的应用[J]. 华南理工大学学报: 自然科学版, 2015, 43 (06): 103- 109 LI Zhe, WANG Gong-xian, HU Yong, et al Application of improved Rayleigh damping coefficient calculation method in seismic response analysis of shore bridge structure[J]. Journal of South China University of Technology: Science and Technology, 2015, 43 (06): 103- 109
[26]
李平, 刘红帅, 薄景山, 等 汶川MS8. 0地震河谷地形对汉源县城高烈度异常的影响[J]. 地球物理学报, 2016, 1 (1): 174- 184 LI Ping, LIU Hong-shuai, BO Jing-shan, et al Effects of river valley topography on anomalously high intensity in the Hanyuan town during the Wenchuan[J]. Chinese Journal of Geophysics, 2016, 1 (1): 174- 184
[27]
杨文采 波动方程的逆散射与迭代线性化反演[J]. 石油物探, 1995, 34 (03): 114- 121 YANG Wen-cai Inverse scattering of wave equations and iterative linearization inversion[J]. Geophysical Prospecting for Petroleum, 1995, 34 (03): 114- 121
[28]
戚玉亮, 大塚久哲 ABAQUS动力无限元人工边界研究[J]. 岩土力学, 2014, 35 (10): 3007- 3012 QI Yu-liang, HISANORI Otsuka Study of ABAQUS dynamic infinite element artificial boundary[J]. Rock and Soil Mechanics, 2014, 35 (10): 3007- 3012
[29]
UNGLESS R F. An infinite finite element [D]. Vancouver: University of British Columbia, 1973.
[30]
阳栋, 王志亮 基于无限元和波场分离法的地震响应数值分析[J]. 同济大学学报: 自然科学版, 2012, 40 (8): 1129- 1134 YANG Dong, WANG Zhi-liang Numerical analysis of seismic response based on infinite element and wave field separation method[J]. Journal of Tongji University: Natural Science, 2012, 40 (8): 1129- 1134
[31]
ZHAO Guo-chen, XU Long-jun, XIE Li-li On near-fault ground motion characteristics through multi-scale method[J]. Chinese Journal of Geophysics, 2013, 56 (6): 742- 753
[32]
Applied Technology Council Quantification of building seismic performance factors[J]. California: Federal Emergency Management Agency, 2008,
[33]
顾斌, 丁政 苏浙沪及邻区深部构造及其与地震活动性的关系[J]. 地震学刊, 1987, (3): 29- 37 GU Bin, DING Zheng Deep structures and their relation to earthquake activity in Suzhizi and neighboring areas[J]. Journal of Seismology, 1987, (3): 29- 37
CHOI Y, STEWART J P, GRAVES R W Empirical model for basin effects accounts for basin depth and source location[J]. Bulletin of the Seismological Society of America, 2005, 95 (4): 1412- 1427
[36]
王力, 周叮, 刘伟庆, 等 场地盆地效应的振动台试验[J]. 南京工业大学学报: 自然科学版, 2014, 36 (02): 107- 111 WANG Li, ZHOU Ding, LIU Wei-qing, et al Shaking table test of site basin effect[J]. Journal of Nanjing Tech University: Natural Science Edition, 2014, 36 (02): 107- 111
[37]
袁晓铭, 李雨润, 孙锐 圆弧状沉积盆地与软土单覆盖层出平面地表运动对比[J]. 地震工程与工程振动, 2002, 22 (4): 16- 21 YUAN Xiao-ming, LI Yu-run, SUN Rui Comparison of out-of-plane surface ground motion between a circular-arc alluvial valley and a single overburden soft layer[J]. Earthquake Engineering and Engineering Vibration, 2002, 22 (4): 16- 21
[38]
SEMBLAT J F, PARARA E, KHAM M, et al. Site effects: basin geometry vs soil layering [C] // Joint Conference of the 11th International Conference on Soil Dynamics and Earthquake Engineering and the 3rd International Conference on Earthquake Geotechnical Engineering. Berkeley: University of California, 2004.
[39]
孙柏涛, 张桂欣 汶川8. 0级地震中各类建筑结构地震易损性统计分析[J]. 土木工程学报, 2012, 45 (02): 26- 30 SUN Bo-tao, ZHANG Gui-xin Statistical analysis of the seismic fragility of various types of building structures in WenchuanM8. 0 earthquake[J]. China Civil Engineering Journal, 2012, 45 (02): 26- 30