Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (1): 65-72    DOI: 10.3785/j.issn.1008-973X.2018.01.010
Mechanical and Energy Engineering     
Energy-capturing mechanism of hydrofoil oscillating motion
XIE Yu-dong1,2, WANG Yong1,2, MA Peng-lei1,2, LU Jian-wei1,2
1. School of Mechanical Engineering, Shandong University, Jinan 250061, China;
2. Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China
Download:   PDF(1855KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An oscillating motion model of the hydrofoil was developed based on hydrodynamic principles in order to elucidate the energy-capturing mechanism of the oscillating motion of the hydrofoil. The commercial software ANSYS Fluent was used to conduct numerical simulations of hydrofoil motion, and the effect of hydrofoil motion on the surrounding flow field was analyzed. The influences of the motion and dimension parameters of the hydrofoil on the hydrodynamic characteristics and the energy-capturing efficiency of the hydrofoil were analyzed. The dynamic response characteristics of the hydrofoil were obtained. Results show that there is a break point in the process of the energy-capturing efficiency changes with the motion parameters of the hydrofoil. Setting the motion parameters to be the values corresponding to the peak efficiency can eliminate the oscillation shocks of normal variation curves of the instantaneous lift coefficient, instantaneous drag coefficient and instantaneous power coefficient. The hydrofoil power output corresponding to the peak efficiency may not be at its maximum. The energy captured by heaving motion is positively related to the hydrofoil thickness, while the energy captured by pitching motion is negatively related to the hydrofoil thickness. The effect of the dimension parameters on the characteristics of the hydrofoil is related to the influence coefficient of fluid viscosity.



Received: 19 December 2016      Published: 15 December 2017
CLC:  TK72  
Cite this article:

XIE Yu-dong, WANG Yong, MA Peng-lei, LU Jian-wei. Energy-capturing mechanism of hydrofoil oscillating motion. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 65-72.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.01.010     OR     http://www.zjujournals.com/eng/Y2018/V52/I1/65


水翼振荡运动捕获潮流能的机理研究

为了揭示水翼发生振荡运动而捕获潮流能的机理,根据流体力学的基本理论,建立水翼振荡运动的模型.利用商用软件ANSYS Fluent对水翼的运动过程进行数值模拟,分析水翼运动对周围流场的影响,讨论水翼的运动参量、尺度参数等对水翼的水动力特性和能量捕获性能的影响规律,获得水翼在流体作用下的动力响应特性.结果表明:水翼的捕能总效率随运动参量变化的过程存在拐点,将水翼的运行参数设置在最高效率点对应的参数下,能够减小瞬时升力系数、瞬时阻力系数、瞬时功率系数各系数曲线的振荡突变现象,但该参数设置下的水翼功率输出未必能够达到最大;升沉运动捕获的能量与水翼厚度呈正相关,俯仰运动捕获的能量与水翼厚度呈负相关;水翼几何参数对水翼工作性能的影响程度与流体黏性的影响密切相关.

[1] JOSLIN J. Evaluating environmental risks for marine renewable energy[J]. Sea Technology, 2016, 57(2):73.
[2] BICER Y, DINCER I. Analysis and performance evaluation of a renewable energy based multi generation system[J]. Energy, 2016, 94:623-632.
[3] OUREILIDIS K O, BAKIRTZIS E A, DEMOULIAS C S. Frequency-based control of islanded microgrid with renewable energy sources and energy storage[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(1):54-62.
[4] 吕沁,李德堂,唐文涛,等. 基于液压传动的振荡浮子式波浪发电系统设计[J]. 浙江大学学报:工学版,2016,50(2):234-240. LV Qin, LI De-tang, TANG Wen-tao, et al. Design oscillating buoy wave power generating system based on hydraulic transmission[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(2):234-240.
[5] LIU X, ZHOU L J, ESCALER X, et al. Numerical simulation of added mass effects on a hydrofoil in cavitating flow using acoustic fluid-structure interaction[J]. Journal of Fluids Engineering, 2017, 139(4):041301.
[6] GARG N, KENWAY G K W, LYU Z J, et al. High-fidelity hydrodynamic shape optimization of a 3-D hydrofoil[J]. Journal of Ship Research, 2015, 59(4):209-226.
[7] AKCABAY D T, YOUNG Y L.Parametric excitations and lock-in of flexible hydrofoils in two-phase flows[J]. Journal of Fluids and Structures, 2015, 57:344-356.
[8] MCKINNEY W, DELAURIER J. Thewingmill:an oscillating-wing windmill[J]. Journal of Energy, 1981, 5(2):109-115.
[9] KINSEY T, DUMAS G. Parametric study of an oscillating airfoil in a power-extraction regime[J]. AIAA Journal, 2008, 46(6):1318-1330.
[10] KINSEY T, DUMAS G. Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils[J]. Journal of Fluids Engineering, 2012, 134(2):21104.
[11] AMIRALAEI M R, ALIGHANBARI H, HASHEMI S M. An investigation into the effects of unsteady parameters on the aerodynamics of a low Reynolds number pitching airfoil[J]. Journal of Fluids and Structures, 2010, 26(6):979-993.
[12] AMIRALAEI M R, ALIGHANBARI H, HASHEMI S M. Flow field characteristics study of a flapping airfoil using computational fluid dynamics[J]. Journal of Fluids and Structures, 2011, 27(7):1068-1085.
[13] YOUNG J, LAI J C S, PLATZER M F, et al. Oscillation frequency and amplitude effects on the wake of a plunging airfoil[J]. AIAA Journal, 2004, 42(10):2042-2052.
[14] THIERY M, COUSTOLS E. URANS computations of shock-induced oscillations over 2D rigid airfoils:influence of test section geometry[J]. Flow Turbulence and Combustion, 2005, 74(4):331-354.
[15] THIERY M, COUSTOLS E. Numerical prediction of shock induced oscillations over a 2D airfoil:influence of turbulence modelling and test section walls[J]. International Journal of Heat and Fluid Flow, 2006, 27(4):661-670.
[16] 刘臻,史宏达,刘芸. 应用Realizable k-ε湍流模型的振荡水翼绕流数值模拟研究[J]. 哈尔滨工程大学学报,2008,29(6):628-634. LIU Zhen, SHI Hong-da, LIU Yun. Numerical simulation of water flow overan oscillating hydrofoil using realizable k-ε turbulence model[J]. Journal of Harbin Engineering University, 2008, 29(6):628-634.
[17] PENG Z, ZHU Q. Energy harvesting through flow-induced oscillations of a foil[J]. Physics of Fluids, 2009, 21(9):1-9.
[18] XIAO Q, LIAO W, YANG S, et al. How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil[J]. Renewable Energy, 2012, 37(1):61-75.
[19] LE T Q, KO J H.Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two-and three-dimensional flow simulations[J]. Renewable Energy, 2015, 80:275-285.
[20] KARN A, SHAO S Y, ARNDT R E A, et al.Bubble coalescence and breakup in turbulent bubbly wake of a ventilated hydrofoil[J]. Experimental Thermal and Fluid Science, 2016, 70:397-407.
[21] CHEN Y, CHEN X, LI J, et al.Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil[J]. Ocean Engineering, 2017, 129:1-19.
[22] DAVIDS S T. A computational and experimental investigation of a flutter generator[D]. Monterey:Naval Postgraduate School, 1999.

No related articles found!