Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Distribution and chemical forms of major elements in MSWI fly ash
HOU Xia-li, LI Xiao-dong, CHEN Tong, LU Sheng-yong, JI Sha-sha, REN Yong
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(2473KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Three fly ash samples came from different types of municipal solid waste incineration (MSWI). The major elements in different depth of fly ashes and their leachabilities, especially chemical forms of C and Cl at the outermost layer of fly ash surface, were discussed. Results indicate that Si, Al, Fe, Ti and Ca, with high boiling point, are more easily taken into the core of fly ash particles mechanically in the forms of stable oxides. While elements with low boiling point, such as Na, K, Zn, are mostly adsorbed on the surface of fly ash particles by “evaporation-condensation” process. At the outermost layer of fly ash surface, the C has different species, such as graphitic-C(C=C), aliphatic-C(C-H/C-C) and O-functional groups(C-O/C=O/O-C=O); The Cl consists of both inorganic and organic functionalities, and the proportion of them is 60% and 40%, respectively. For the reasons of low concentration of chlorine and oxidizing atmosphere in circulating fluidized bed (CFB) incinerator, the enrichment of Na and K on the surface of fly ash particles in CFB incinerator is not as high as that in grate incinerator.



Published: 26 December 2015
CLC:  X 705  
Cite this article:

HOU Xia-li, LI Xiao-dong, CHEN Tong, LU Sheng-yong, JI Sha-sha, REN Yong. Distribution and chemical forms of major elements in MSWI fly ash. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 930-937.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.05.017     OR     http://www.zjujournals.com/eng/Y2015/V49/I5/930


垃圾焚烧飞灰中主要元素的深度分布及形态

以正在运行的3个不同垃圾焚烧炉的布袋除尘器飞灰为研究对象,分析不同炉型飞灰中的主要元素在飞灰颗粒不同深度上的分布状况及浸出特性,并着重对飞灰表面C和Cl的形态进行讨论.结果表明:飞灰的基体主要由Si、Al、Fe、Ca、Mg、Ti等高沸点的元素,通过机械迁移以氧化物的形式形成;而Na、K等低沸点元素,主要通过“蒸发-冷凝”机理以可溶性氯盐和硫酸盐的形式富集在飞灰颗粒表面.在飞灰表面,C元素主要以C=C、C-H/C-C、C-O/C=O/O-C=O等有机态形式出现,Cl元素的有机态和无机态,分别约占40%和60%.流化床飞灰表面Na、K等元素的富集状况没有炉排炉明显,主要是由于流化床炉气氛多呈氧化性并且其中氯含量较低,抑制了金属的挥发.

[1] STANMORE B R. The formation of dioxins in combustion systems [J]. Combustion and Flame, 2004, 136, 398-427.
[2] MCKAY G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review [J]. Chemical Engineering Journal, 2002, 86:343-368.
[3] 张海英,赵由才,祁景玉. 生活垃圾焚烧飞灰的物理化学特性[J]. 环境科学与技术,2008,31(11):96-99.
ZHANG Hai-ying, ZHAO You-cai, QI Jing-yu. Physicochemical property of MSWI fly ash [J]. Environmental Science and Technology, 2008, 31(11):96-99.
[4] 王军,蒋建国,隋继超,等. 垃圾焚烧飞灰基本性质的研究[J]. 环境科学,2006,27(11):2283-2287.
WANG Jun, JIANG Jian-guo, SUI Ji-chao, et al. Fundamental properties of fly ash from municipal solid waste incineration [J]. Environmental Science, 2006,27(11):2283-2287.
[5] 李建新,严建华,金余其,等. 生活垃圾焚烧飞灰重金属特性分析[J]. 浙江大学学报:工学版,2004,38(4):490-494.
LI Jian-xin, YAN Jian-hua, JIN Yu-qi, et al. Characteristic analysis of heavy metals in MSWI fly ash [J]. Journal of Zhejiang University:Engineering Science, 2004,38(4):490-494.
[6] MOULDER J F, STICHLE W F, SOBOL P E, et al. Handbook of X-ray photoelectron spectroscopy [M]. Eden Praine: Perkin-Elmer,1992:38-65,168-188.
[7] 王学涛,焦有宙,金保升. 华东地区垃圾焚烧飞灰基本特性研究[J]. 热力发电,2007(5):38-42.
WANG Xue-tao, JIAO You-zhou, JIN Bao-sheng. Analysis of basic characteristics concerning fly ash from MSW incineration in east China [J]. Thermal Power Generation, 2007(5):38-42.
[8] 李润东,聂永丰,李爱民,等. 垃圾焚烧飞灰理化特性研究[J]. 燃料化学学报,2004,32(2):175-179.
LI Run-dong, NIE Yong-feng, LI Ai-min, et al. Study on physical chemical characteristics of fly ash from municipal solid waste incinerator [J]. Journal of Fuel Chemistry and Technology, 2004, 32(2):175-179.
[9] 李浩,王恒,耿海洋,等. 垃圾焚烧飞灰物理化学性质的实验研究[J]. 环境工程学报,2007,1(12):137-140.
LI Hao, WANG Heng, GENG Hai-yang, et al. A study on physical and chemical characteristics of fly ash from municipal solid waste incinerator [J]. Chinese Journal of Environmental Engineering, 2007, 1(12):137-140.
[10] TSUBOUCHI N, HAYASHI H, KAWASHIMA A, et al. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants [J]. Fuel, 2011, 90(1):376-383.
[11] TSUBOUCHI N, HASHIMOTO H, OHTAKA N, et al. Chemical characterization of dust particles recovered from bag filters of electric arc furnaces for steelmaking: Some factors influencing the formation of hexachlorobenzene [J]. Journal of Harazardous Materials, 2010, 183(1-3):116-124.
[12] FUJIMORI E, SHIOZAWA R, IWATA S, et al. Multielement and morphological characterization of industrial waste incineration fly ash as studied by ICP-AES/ICP-MS and SEM-EDS [J]. Bulletin of the Chemical Society of Japan, 2002, 75(6):1205-1213.
[13] BELEVI H, MOENCH H. Factors determining the element behavior in municipal solid waste incinerators:1.Field Studies [J]. Environmental Science and Technongy, 2000, 34:2501-2506.
[14] CHEN J C, WEY M Y, LIU Z S. Adsorption mechanism of heavy metals on sorbents during incineration [J]. Journal of Environmental Engineering, 2001, 127(1):63-69.
[15] CAHILL C A, NEWLAND L W. Comparative efficiencies of trace metal extraction from municipal incinerator ashes [J]. International Journal of Environmental Analytical Chemistry, 1982, 11:227-239.
[16] DAVISON R L, NATUSCH D F S, WALLACE J R, et al. Trace elements in fly ash-dependence of concentration on particle size [J]. Environmental Science and Technongy, 1974, 8(13): 1107-1113.
[17] FERNANDEZ M A, MARTINE L, SEGARRA M, et al. Behavior of Heavy Metal In the Combustion Gases of Urban Waste Incinerators [J]. Environmental Science and Technology, 1992, 26(5):1040-1047.
[18] KLAIN D H, ANDREN A W, CENTER J A, et al. Pathways of 37 trace elements through coal-fired power plant [J]. Environmental Science and Technology, 1975, 9(9):973979.
[19] TAKAOKA M, TAKEDA N, MIURA S. The behaviour of heavy metals and phosphorus in an ash melting process [J]. Waste Science and Technology, 1997, 36(11): 275282.
[20] UCHIDA S, KAMO H, KUBOTA H. The source of HCl emission from municipal refuse incinerators [J]. Industrial and Engineering Chemistry Research, 1988, 27(11):2188-2190.
[21] WEI M Y, SU J L, YAN M H, et al. The concentration distribution of heavy metals under different incineration operation conditions [J]. The Science of the Total Environment, 1998, 212:183-193.
[22] J A 迪安,魏俊华. 兰氏化学手册[M]. 北京:科学出版社,2000:410-4129.

[1] LIU Hai long, ZHOU Jia wei, CHEN Yun min, LI Yu chao, ZHAN Liang tong. Evaluation of municipal solid waste landfill stabilization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2336-2342.
[2] MAO Hua zhen, WANG Fei, MAO Fei yan, CHI Yong, LU Sheng yong, CEN Ke fa. Effect of thermal hydrolysis on moisture distribution of sewage sludge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2283-2288.
[3] ZHANG Shuai yi,HUANG Ya ji,WANG Xin ye,YAN Yu peng,LIU Chang qi,CHEN Bo. Effect of chlorides on plumbum dynamic volatilization during simulated municipal solid waste incineration[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 485-490.
[4] CHEN Tong, ZHAN Ming-xiu, LIN Xiao-qing, LI Xiao-dong, LU Sheng-yong, YAN Jian-hua. Dioxin suppression gases emission characteristics during particular sludge drying process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 322-329.
[5] GUO Xing-ming, HE Yong. Ontology model of real-time inventory and hourglass-sowing distribution in supply chain system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 54-62.
[6] DING Kuan, ZHONG Zhao-ping, ZHANG Bo, LIU Zhi-chao. Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 2053-2060.
[7] ZHANG Zhen-ying, YAN Li-jun. Correlation properties of the deformation and the shear strength of  fresh municipal solid waste[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1962-1967.
[8] SHAO Zhi-wei, HUANG Ya-ji, ZHANG Qiang, LIU Pei-gang, YAN Yu-peng.
Co-combustion characteristics of sludge and bituminous coal under O2/CO2 atmosphere
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1739-1745.
[9] HONG Chen, XING Yi, WANG Zhi-qiang, SI Yan-xiao, ZHOU Liang. Influence of surfactant conditioning on sludge dewaterability in various pH value[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 850-857.
[10] FU Cheng-long, MA Hong-lei, CHI Yong, YAN Jian-hua, NI Ming-jiang. Study on migration and stability of total Cr
 in tannery sludge by thermal hydrolysis treatment
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1631-1636.
[11] JI Ya, LU Sheng-yong, LIN Xiao-qing, LI Xiao-dong, YAN Jian-hua. Gas/particle partitioning of PCDD/Fs in flue gas of
hazardous waste incinerator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(7): 1238-1242.
[12] XIE Hao-hui, MA Hong-lei, CHI Yong, MA Zeng-yi. Bound water measurement methods and moisture distribution within sewage sludge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(3): 503-508.
[13] WENG Huan-xin, ZHANG Jin-jun, CAO Yan-sheng, MA Xue-wen. Characteristics and sintering technology of haydite
made of sewage sludge
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(10): 1877-1883.
[14] WANG Qin, YAN Jian-hua, PAN Xin-chao, CHI Yong, GAO Fei. Vitrification of MSWI fly ash using direct current double arc plasma[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 141-145.
[15] JIANG Xu-Guang, LI Chun-Yu, CHE Chong, SHU Kai, FU Juan-Juan. Migration characteristics of inorganic bromine during
incineration of medical waste
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(9): 1787-1792.