Please wait a minute...
J4  2012, Vol. 46 Issue (6): 1097-1106    DOI: 10.3785/j.issn.1008-973X.2012.06.021
    
Probabilistic-based effect analysis of different maintenance actions
on reinforced concrete bridges
TIAN Hao1,2, JIN Xiao-ping2, CHEN Ai-rong1
1.Department of Bridge Engineering, Tongji University, Shanghai 200092, China;
2. Zhejiang Scientific Research Institute of Communication, Hangzhou 310006, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To quantitatively simulate the effects of maintenance actions on deteriorating reinforced concrete (RC) bridges, a probabilistic-and finite element-based lifetime performance assessment method was proposed. Based on the structural state during the entire degradation process, the existing maintenance actions were firstly categorized as four types: delay open rust, postponement corrosion, strengthen performance and replacement structure. Delay open rust was used to put off the initiation of steel corrosion, postponement corrosion could suppress the corrosion process in a time interval, strengthening performance was applied to improve the structural performance, and replacement structure could restore the components or structure to their original conditions. The simulation methods related to the effects of each maintenance type on the structural lifetime performance were specifically introduced. Analysis module for considering the maintenance actions was written and added into the computer program CBDAS. Time-variant system reliability could thus be computed associated with updated CBDAS, Monte-Carlo simulation, structural failure mode, and computing software for system reliability. Finally, an existing RC continuous bridge was used as illustrative example. Lifetime performances of the given example without and with various maintenance types were discussed in terms of time-variant system reliability. The results show that, different maintenance actions can delay the structural performance degradation or evidently improve the structural performance. The appropriate maintenance action should be selected based on the actual structural state.



Published: 24 July 2012
CLC:  TU 375.4  
Cite this article:

TIAN Hao, JIN Xiao-ping, CHEN Ai-rong. Probabilistic-based effect analysis of different maintenance actions
on reinforced concrete bridges. J4, 2012, 46(6): 1097-1106.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.06.021     OR     http://www.zjujournals.com/eng/Y2012/V46/I6/1097


基于概率的钢筋混凝土桥梁加固措施影响分析

为了定量模拟加固措施对退化钢筋混凝土桥梁的影响,建立一种基于概率和有限元的不同加固措施对钢筋混凝土桥梁影响的分析方法.根据结构在退化过程中的不同状态将现有加固措施分为四类:延迟开锈、延缓锈蚀、加强性能以及更换结构.延迟开锈用来推迟钢筋的开始锈蚀时刻,延缓锈蚀可以使钢筋在一段时间内停止锈蚀,加强性能可以提高结构的受力性能,更换结构可以使构件或结构恢复初始状态.详细介绍了每种加固措施对结构影响的模拟方法,编写了加固措施影响的分析模块并加入到已有的软件CBDAS中.利用更新的CBDAS、MonteCarlo模拟、结构失效模型以及体系可靠度计算软件可以求出结构的时变体系可靠度.以一座钢筋混凝土连续梁为对象,利用时变体系可靠度研究不考虑加固和考虑不同加固措施时结构的性能演变规律.结果表明:不同加固措施能延迟结构性能退化,能明显改善结构性能,应根据结构的实际受力状态来选取合适的加固措施.

[1] NEVES L C, FRANGOPOL D M. Condition, safety and cost profiles for deteriorating structures with emphasis on bridges[J]. Reliability Engineering & System Safety, 2005, 89(2): 185-98.
[2] NEVES L C, FRANGOPOL D M, PETCHERDCHOO A. Probabilistic lifetimeoriented multiobjective optimization of bridge maintenance: combination of maintenance types[J]. Journal of Structural Engineering, 2006, 132(11): 1821-34.
[3] NEVES LC, FRANGOPOL D M, PETCHERDCHOO A. Probabilistic lifetimeoriented multiobjective optimization of bridge maintenance: single maintenance type[J]. Journal of Structural Engineering, 2006, 132(6): 991-1005.
[4] YANG S I, FRANGOPOL D M, NEVES L C. Optimum maintenance strategy for deteriorating bridge structures based on lifetime functions[J]. Engineering Structures, 2006, 28(2): 196-206.
[5] YANG S I, FRANGOPOL D M, KAWAKAMI Y,et al. The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs[J]. Reliability Engineering & System Safety, 2006, 91(6): 698-705.
[6] YANG S I, FRANGOPOL D M, NEVES L C. Service life prediction of structural systems using lifetime functions with emphasis on bridges[J]. Reliability Engineering & System Safety, 2004, 86(1): 39-51.
[7] ESTES A C, FRANGOPOL D M. Minimum expected costoriented optimal maintenance planning for deteriorating structures: application to concrete bridge decks[J]. Reliability Engineering & System Safety, 2001, 73(3): 281-91.
[8] OKASHA N M, FRANGOPOL D M. Lifetimeoriented multiobjective optimization of structural maintenance considering system reliability, redundancy and lifecycle cost using GA[J]. Structural Safety, 2009, 31(6): 460-74.
[9] 田浩. 给定寿命期内混凝土桥梁性能演变分析[D]. 上海:同济大学桥梁工程系,2009.
TIAN Hao. Research on structure performance evolution of concrete bridges in given service life[D]. Shanghai: Department of Bridge Engineering, Tongji University, 2009.

[10] JTG/T J222008. 公路桥梁加固设计规范[S]. 北京:人民交通出版社,2008.
[11] ESTES A C, FRANGOPOL D M. Repair optimization of highway bridges using system reliability approach[J]. Journal of Structural Engineering, 1999, 125(7): 766-75.
[12] NOWAK A S. Reliability of structures[M]. New York: McGrawHill Company, Inc., 2000.
[13] ESTES A C, FRANGOPOL D M. RELSYS: A computer program for structural system reliability analysis[J]. Structure Engineering & Mechanics, 1998, 6(8): 901-19.
[14] JTGD622004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:人民交通出版社,2004.
[15] JTG D602004. 公路桥涵设计通用规范[S]. 北京:人民交通出版社,2004.
[16] GB/T 502831999. 公路工程结构可靠度设计统一标准[S]. 北京:中国建筑工业出版社,1999.
[17] CECS 220: 2007. 混凝土结构耐久性评定标准[S]. 北京:中国建筑工业出版社,2007.
[18] NOWAK A S, SZERSZEN M M. Calibration of design code for building (ACI318): part 1statistical models for resistance[J]. ACI Structural Journal, 2003, 100(3): 377-82.
[19] TABSH S W, NOWAK A S. Reliability of highway girder bridges[J]. Journal of Structural Engineering, 1991, 177(8): 2372-88.
[20] NOWAK A S, YAMANI A S, TABSH S W. Probabilistic models for resistance of concrete bridge girders[J]. ACI Structural Journal, 1994, 91(3): 269-76.

[1] TIAN Hao, CHEN Ai-rong, CHEN Liang. Structural performance assessment of concrete bridges in life-cycle[J]. J4, 2012, 46(1): 52-57.
[2] JIAO Bin ru, YANG Jun, GUO Chang sheng, LI Shui ming. Key technique of ultralong concrete frame crack control calculation[J]. J4, 2010, 44(10): 2036-2040.