Please wait a minute...
J4  2011, Vol. 45 Issue (4): 727-733    DOI: 10.3785/j.issn.1008-973X.2011.04.023
    
Experimental study of atomization and spray characteristics of
air-assisted coal water slurry nozzle of high fluid loading
DU Cong, HUANG Zhen-yu, LIU Jian-zhong, ZHAO Zi-tong, LI Bo,
ZHOU Jun-hu, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An experimental study was conducted to investigate the performance of air-assisted coal water slurry (CWS) nozzle. A novel designed air assisted high fluid loading CWS injector was presented. The influence of the structure parameters on the atomization and spray characteristic was illustrated in the experiment, which was analyzed according to the theory of fluid dynamics and atomization. Results showed that the diameters of the Y-shaped gas orifices, the orifice of nozzle end, the slurry orifice and the mixing chamber all influenced the relationship between injection pressure and flux, and the diameter of slurry orifice had a direct effect on the slurry pressure. The impact of scale of the nozzle orifice and the Y-shaped orifice was larger than that of the T-shaped orifice. A semi empirical flow characteristic equation was obtained with the multi-parameter regression method. The experimental results of spray Sauter mean diameter (SMD) showed that the atomization performance was improved with an increase of the diameter of the Y-shaped gas orifice.



Published: 05 May 2011
CLC:  TK 16  
Cite this article:

DU Cong,HUANG Zhen-yu,LIU Jian-zhong,ZHAO Zi-tong,LI Bo,ZHOU Jun-hu,CEN Ke-fa. Experimental study of atomization and spray characteristics of
air-assisted coal water slurry nozzle of high fluid loading. J4, 2011, 45(4): 727-733.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.04.023     OR     http://www.zjujournals.com/eng/Y2011/V45/I4/727


大容量空气雾化水煤浆喷嘴的实验研究

对空气雾化水煤浆(CWS)喷嘴进行实验研究.提出适合于空气雾化的大容量撞击式水煤浆喷嘴,在实验台上研究结构参数对流量和雾化特性的影响,结合流体力学及雾化理论对喷嘴结构和实验结果进行分析.实验表明,影响喷嘴流量特性(气浆压力和流量间的相互关系)的主要参数有Y型气孔尺寸、混合室直径、浆孔直径、雾化头出口孔尺寸等,其中浆孔直径的变化显著影响浆压;出口孔径、Y型气孔尺寸的影响大于T型气槽宽度和混合室直径的影响;通过多元参数回归得到喷嘴流量特性的半经验方程;索太尔平均粒径(SMD)测量结果显示,较大的Y型气孔能够强化雾化头的雾化作用,改善雾化性能.

[1] CHENG Jun, ZHOU Junhu, LI Yanchang, et al. Effects of pore fractal structures of ultrane coal water slurrieson rheological behaviors and combustion dynamics [J]. Fuel, 2008,87(12): 2620-2627.
[2] ZENG Jiliang, CAO Xinyu, ZHAO Xiang, et al. Application of CWS combustion technology to power plants in Guangdong Province of China [C]∥Proceedings of ICOPE03, International Conference on Power Engineering03. Kobe: JSME, 2003: 415-419.
[3] 程军,周俊虎,李艳昌,等.超声辐照对水煤浆流阻和制浆性能的影响规律[J].浙江大学学报:工学版,2008,42(6): 998-1004.
CHENG Jun, ZHOU Junhu, LI Yanchang, et al. Impacts on flow resistance and physicochemical property of coal water slurry by ultrasonic irradiation [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(6): 998-1004.
[4] 翁卫国,周俊虎,牛志刚,等.220t/h水煤浆锅炉NOx排放特性的研究[J].浙江大学学报:工学版,2006,40(8): 1439-1442.
WENG Weiguo, ZHOU Junhu, NIU Zhigang,et al. Research on characteristics of NOx emission for 220 t/h CWS fired utility boiler [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(8): 1439-1442.
[5] 张传名,刘建忠,周俊虎,等.220t/h燃油锅炉改烧水煤浆技术及应用[J].热力发电,2006,35(5): 30-33.
ZHANG Chuanming, LIU Jianzhong, ZHOU Junhu, et al. Technology of retrofitting designed 220 t/h oilfired boiler into coalwaterslurry fired one and application thereof [J]. Thermal Power Generation, 2006, 35(5): 30-33.
[6] 岑可法,姚强,曹欣玉,等.煤浆燃烧、流动、传热和气化的理论与应用技术[M].杭州:浙江大学出版社,1997.
[7] 曹欣玉,翁卫国,黄镇宇,等.白杨河电厂230t/h锅炉燃用水煤浆工业试验[J].中国电力,2001,34(7): 16-18.
CAO Xinyu, WENG Weiguo, HUANG Zhenyu, et al. Industrial test for burning watercoal slurry in 230 t/h boiler for Baiyanghe power plant [J]. Chinese Electric Power, 2001, 34(7): 16-18.
[8] YU Hailong, ZHANG Chao. LIU Jianzhong, et al. Experimental study of the atomizing performance of a new type of nozzle for coal water slurry [J]. Energy Fuels, 2008, 22(2): 1170-1173.
[9] 于海龙.新型水煤浆气化喷嘴和气化炉的开发以及气化过程数值模拟[D].杭州:浙江大学,2004.
YU Hailong. Development of latemodel CWS gasification jet nozzle and gasifier and numerical simulation of gasification process [D]. Hangzhou: Zhejiang University,2004.
[10] LASHERAS J C, VILLERMAUX E, HOPFINGER E J. Breakup and atomization of a round water jet by a highvelocity annular air jet [J]. Journal of Fluid Mechanics, 1998, 357(4): 351-379.
[11] LEFEBVRE A H. Atomization and sprays [M]. New York: Hemisphere, 1989.
[12] LIU Z, REITZ R D. An analysis of the distortion and breakup mechanisms of high speed liquid drops \
[J\]. International Journal of Multiphase Flow, 1997, 23(4): 631-650.
[13] COSSALI G E, MARENGO M, SANTINI M. Singledrop empirical models for spray impact on solid walls: a review [J]. Atomization and Sprays, 2005, 15 (6): 699-736.
[14] 任建兴.水煤浆喷嘴技术的研究[D].杭州:浙江大学,1992.
REN Jianxing. A study on CWS nozzle \
[D\]. Hangzhou: Zhejiang University,1992.
[15] JIANG X, SIAMAS G A, JAGUS K, et al. Physical modelling and advanced simulations of gasliquid twophase jet ows in atomization and sprays [J]. Progress in Energy and Combustion Science, 2010, 36(2): 131-167.

[1] HAN Zhi-jiang, ZHOU Jun-hu, YANG Wei-juan, YANG Cheng-hu. Experimental and model study on ignition of magnesium in steam[J]. J4, 2013, 47(2): 267-272.
[2] YANG Wen-chuang, YANG Wei-juan, ZHOU Zhi-jun, YUAN Wei-dong,. Influence of secondary air angle on flow field in down-fired furnace
determined by cold-flow modeling experiment
[J]. J4, 2013, 47(1): 139-145.
[3] LIANG Jun-hui, HUANG Qun-xing, FENG Yu-xiao, CHI Yong, YAN Jian-hua. Experimental analysis of the effect of oxygen concentration on
soot formation in ethylene diffusion flame
[J]. J4, 2012, 46(8): 1465-1471.
[4] CHEN Yao-ji, ZHOU Zhi-jun, ZHOU Ning, YANG Wei-juan, LIU Jian-zhong, ZHOU Jun-hu. The experimental study of combustion and NOx emission
characteristics of Guizhou anthracite
[J]. J4, 2011, 45(11): 2020-2025.
[5] ZHOU Jun-hu, WANG Yang, YANG Wei-juan, LIU Jian-zhong, WANG Zhi-hua, CEN Ke-fa. Effect of external wind temperature to micro-scale flame[J]. J4, 2011, 45(1): 146-150.