Please wait a minute...
J4  2011, Vol. 45 Issue (4): 660-664    DOI: 10.3785/j.issn.1008-973X.2011.04.012
    
Design of variable loop bandwidth high sensitivity
micro-satellite receiver
ZHANG Chao-jie, JIN Xiao-jun, YANG Wei-jun, JIN Zhong-he
Department of Information Science and Electronics Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The characteristic of low transmit power and antenna gain in micro-satellite requires high receiver sensitivity and high dynamic range for board transponders. A variable loop bandwidth receiver architecture based on all digital carrier recovery loop was presented using I/Q sub-sampling technique. A coherent automatic gain control (AGC) was used in order to control the loop bandwidth. The loop bandwidth was expanded to achieve better tracking performance at high signal to noise ratio; the loop bandwidth was decreased to realize high receiver sensitivity at low signal to noise ratio. —144 dBm receiver sensitivity was achieved and the dynamic range was better than 80 dB under the condition of 250 Hz loop bandwidth.



Published: 05 May 2011
CLC:  TN 927  
Cite this article:

ZHANG Chao-jie, JIN Xiao-jun, YANG Wei-jun, JIN Zhong-he. Design of variable loop bandwidth high sensitivity
micro-satellite receiver. J4, 2011, 45(4): 660-664.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.04.012     OR     http://www.zjujournals.com/eng/Y2011/V45/I4/660


高灵敏度微小卫星可变带宽接收机设计

针对微小卫星发射功率低、天线增益小的特点对星载测控应答机提出的高接收灵敏度及高动态范围要求,研究卫星接收机的实现方法.提出一种基于正交欠采样技术及全数字载波恢复环的可变带宽卫星接收机结构.在全数字载波恢复环的实现中,通过相干自动增益控制(AGC)来控制环路带宽,使得在高信噪比下的环路带宽增大,从而获得更佳的跟踪性能;在低信噪比下,降低环路带宽使得接收机有更高的接收灵敏度.经实验测试可知,在250 Hz环路带宽下,接收灵敏度为-144 dBm,动态范围达到80 dB以上.

[1] 詹亚锋,马正新,曹志刚.现代微小卫星技术及发展趋势[J].电子学报,2000,28(7): 102-106.
ZHAN Yafeng, MA Zhengxin, CAO Zhigang. Technology of modern micro satellite and its development direction [J]. Journal of Electronics, 2000, 28(7): 102-106.
[2] BERNER J B, KAYALAR S, PERRET J. The NASA spacecraft transponding modem [C] ∥ IEEE Aerospace Conference. Big Sky: IEEE, 2000: 195-209.
[3] SIMONE L, COMPARINI M C. X/X/Ka transponder for deep space missions: architectural design and breadboarding at ALENIA SPAZIO [C]∥ IEEE Aerospace Conference. Big Sky: IEEE, 2003: 1475-1485.
[4] YUEN J H. Deep space telecommunications systems engineering [M]. New York: Plenum, 1983.
[5] BERNER J B, LAYLAND M J, KINMAN P W. Flexible loop filter design for spacecraft phaselocked receivers [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 957-964.
[6] YEE D G. A design methodology for highlyintegrated lowpower receivers for wireless communications [D]. Berkeley: University of California, 2001.
[7] TAVARES G, PIEDADE M S. High performance algorithms for digital signal processing AGC [C] ∥ IEEE International Symposium on Circuits and Systems. New Orleans: IEEE, 1990: 1529-1532.
[8] NGUYEN T M, HINEDI S M, YEH H G, et al. Performance evaluation of digital phaselocked loops for advanced deep space transponders [R]. Pasadena, CA: JPL, 1994: 175-193.
[9] AGUIRRE S, HURD W J. Design and performance of sampled data loops for subcarrier and carrier tracking [R]. Pasadena, CA: JPL, 1986: 114-124.
[10] GARDNER F M. Phaselock techniques [M]. 3rd ed. New Jersey: Wiley, 2005.
[11] STEPHENS S A, THOMAS J B. Controlledroot formulation for digital phaselocked loops [J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 78-95.
[12] COOK B, DENNIS M, KAYALAR S, et al. Development of the advanced deep space transponder [R]. Pasadena, CA: JPL, 2004: 1-14.

[1] ZHANG Chao-jie, JIN Xiao-jun, JIANG Jian-wen, JIN Zhong-he. Transponder carrier acquisition technique based on
 center frequency detection
[J]. J4, 2011, 45(3): 419-423.