Please wait a minute...
J4  2011, Vol. 45 Issue (3): 576-581    DOI: 10.3785/j.issn.1008-973X.2011.03.030
    
Analysis of syntrophic acetogenic bacteria community in
anaerobic granular sludge from a full-scale UASB
MA Jun-ke1, LIU Chun1, WU Gen2, YANG Jing-liang1,
GUO Jian-bo1, LI Zai-xing1
1. School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang
050018, China; 2. Basic Research Service Center, the Ministry of Science and Technology, Beijing 100862, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Probes specific for syntrophic acetogenic bacteria were designed and fluorescence in situ hybridization (FISH) was used to analyze their distribution and relative abundance in anaerobic granular sludge in a full-scale up-flow anaerobic sludge bed (UASB) reactor treating avermectin wastewater, and the activity of syntrophic acetogenic bacteria was also determined. The results indicated that the distribution forms of syntrophic acetogenic bacteria, syntrophic propionate-oxidizing bacteria and syntrophics fatty acid-β-oxidizing syntrophic bacteria were same on the surface and inner face of granular sludge samples in different formation periods. However, the average relative abundances of those syntrophic acetogenic bacteria populations were different, ranging from (10.08±0.81)% to (28.06±2.12)%. The maximum relative abundance of syntrophic acetogenic bacteria was obtained when granular sludge was in mature period. The relative abundances of syntrophic acetogenic bacteria on the inner face were less than those on the surface of granular sludge samples. The relative abundances of syntrophic propionateoxidizing bacteria were larger than those of syntrophics fatty acid-β-oxidizing syntrophic bacteria. The avermectin residue in wastewater showed inhibition effect on syntrophic acetogenic bacteria. The maximum specific acetate rates of granular sludge samples ranged from 0.912 to 1.145 g/(g·d) and their variation tendency was identical with relative abundance of syntrophic acetogenic bacteria.



Published: 16 March 2012
CLC:  X 176  
Cite this article:

MA Jun-ke, LIU Chun, WU Gen, YANG Jing-liang, GUO Jian-bo, LI Zai-xing. Analysis of syntrophic acetogenic bacteria community in
anaerobic granular sludge from a full-scale UASB. J4, 2011, 45(3): 576-581.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.03.030     OR     http://www.zjujournals.com/eng/Y2011/V45/I3/576


工业化UASB厌氧颗粒污泥产氢产乙酸菌群分析

合成特异性探针,应用荧光原位杂交(FISH)技术分析阿维菌素废水处理工业化升流式厌氧污泥床(UASB)反应器颗粒污泥产氢产乙酸菌群分布和相对丰度,并测定菌群活性.结果表明:不同形成阶段颗粒污泥表面和内部剖面,产氢产乙酸菌、食丙酸盐产氢产乙酸菌和食丁酸盐产氢产乙酸菌的分布形态相同;产氢产乙酸菌平均相对丰度范围为(10.08±0.81)%~(28.06±2.12)%.成熟期颗粒污泥中产氢产乙酸菌相对丰度最大;颗粒污泥表面产氢产乙酸菌相对丰度大于内部剖面;食丙酸盐产氢产乙酸菌相对丰度大于食丁酸盐产氢产乙酸菌.阿维菌素残留对产氢产乙酸菌群具有抑制作用.不同形成阶段颗粒污泥最大比产乙酸速率范围为0.912~1.145 g/(g·d),且与产氢产乙酸菌群相对丰度变化趋势一致.

[1] LI Y Y, LAM S, FANG H H. Interaction between methanogenic sulfatereducing and syntrophic acetogenic bacteria in anaerobic degradation of benzoate[J]. Water Research,1996, 30(7): 1555-1562.
[2] LEAPHART A B, FRIZE M J, LOVELL C R. Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups [J]. Applied and Enyironmental Microbiology, 2003,69(1):693-696.
[3] DEBOK F, PLUGGE C M, STAMS A J M. Interspecies electron transfer in methanogenic propionate degrading consortia[J]. Water Research, 2004,38:1368-1375.
[4] BASTONE D J, PICIOREANU C, LOOSDRECHT M C M. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms[J]. Water Research, 2006, 40:3099-3108.
[5] XU K W, LIU H, DU G C, et al. Realtime PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments[J]. Ecology/Environmental Microbiology, 2009, 15: 204-213.
[6] CROCETTI G, MURTO M, BJOMSSON L.An update and optimisation of oligonucleotide probes targeting methanogenic archaea for use in fluorescence in situ hybridisation (FISH) [J]. Journal of Microbiological Methods, 2006, 65: 194-201.
[7] KUBOTA K, IMACHI H, KAWAKMI S, et al. Evaluation of enzymatic cell treatments for application of CARDFISH to methanogens [J]. Journal of Microbiological Methods, 2008, 72: 54-59.
[8] HARRMSEN H, HARRY M P, ANTOON D L,et al. Detection and localization of syntrophic propionateoxidizing bacteria in granular sludge by In situ hybridization using 16S rRNAbased oligonucleotide probes[J]. Applied and Enyironmental Microbiology, 1996,62(5):1656-1663.
[9] HARRMSEN H, AKKERMANS A, STAMS A, et al. Population dynamics of propionateoxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge[J]. Applied and Enyironmental Microbiology, 1996,62(6):2163-2168.
[10] HANSEN K, AHRING B K, RASKIN L. Quantification of syntrophic fatty acidβoxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization[J]. Applied and Enyironmental Microbiology, 1999,65(11):4767-4774.
[11] 李艳娜, 许科伟, 堵国成, 等. 厌氧生境体系中产氢产乙酸细菌的FISH定量解析[J]. 微生物学报,2007,47(6):10381043.
LI Yanna, XU Kewei, DU Guocheng, et al. Quantitative use of fluorescence in situ hybridization to detect syntrophic acetogenic bacteria in anaerobic environmental samples[J]. Acta Microbiologica Sinica, 2007,47(6):1038-1043.
[12] 李艳娜. 产氢产乙酸细菌在厌氧产酸体系中的微生态机理分析[D]. 无锡:江南大学,2008.
[13] LIU X W, HE R, SHEN D S. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge [J]. Journal of Environmental Management, 2008, 88: 939-946.
[14] DIAZ E E, M STAMS A J, AMILS R, et al. Phenotypic properties and microbial diversity of methanogenic granules from a fullscale up flow anaerobic sludge bed reactor treating brewery wastewater[J]. Applied and Environmental Microbiology, 2006, 7: 4942-4949.
[15] LEARPHART A B, LOVELL C R. Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria[J]. Applied and Enyironmental Microbiology, 2001,67(3):1392-1395.
[16] LEARPHART A B, FRIEZ M J, LOVELL C R. Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups[J]. Applied and Enyironmental Microbiology, 2003,69(1):693-696.
[17] LIU W T, CHAN O C, FANG H H P. Characterization of microbial community in granular sludge treating brewery wastewater [J]. Water Research, 2002, 36:1767-1775.
[18] WALLNER G, AMANN R, BEISKER W. Optimizing fluorescent in situ hybridization with rRNAtargeted oligonucleotide probes for flow cytometric identification of microorganisms [J]. Cytometry, 1993, 14: 136-143.
[19] CONRAD R, KLOSE M. Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots[J]. FEMS Microbiology Ecology, 2000, 34 : 27-34.
[20] SANSONE F J, MARTENS C S. Determination of volatile fatty acid turnover rates in organicrich marine sediments[J]. Marine Chemistry, 1981, 10: 233-247.
[21] 陈艺阳, 刘和, 堵国成, 等. 2溴乙烷磺酸盐对污泥厌氧发酵过程中乙酸累积及细菌种群的影响[J]. 应用与环境生物学报. 2007,13(1) : 108-111.
CHEN Yiyang , LIU He , DU Guocheng, et al. Effect of 2bromoethanesulfona te addition on acetate accumulation and variation of bacteria community in anaerobic fermentation of sludge[J]. Chinese Journal of Applied & Environmental Biollogy, 2007,13(1) : 108-111.
[22] 李再兴, 宋存义, 杨景亮, 等. 高效液相色谱法测定废水中阿维菌素的含量[J]. 中国环境监测, 2007, 23(3): 7-9.
LI Zaixing,SONG Cunyi, YANG Jingliang, et al. Determination of avermectin in wastewater by high performance liquid chromatography[J]. Environmental Monitoring in China, 2007, 23(3): 7-9.

[1] MA Jin, LIU Chun, ZHANG Lei, ZHANG Jing, WU Gen, YANG Jing-liang,LUO Xiang. Variations of mixed liquor properties of activated sludge in microbubble aeration[J]. J4, 2013, 47(10): 1877-1882.
[2] QIAO Hua, CHEN Wei-qiu. Coupling between meshless method and finite element method
based on  Arlequin method
[J]. J4, 2011, 45(3): 526-530.