计算机与控制工程 |
|
|
|
|
基于大边距度量学习的车辆再识别方法 |
张师林( ),马思明,顾子谦 |
北方工业大学 城市道路交通智能控制技术北京市重点实验室,北京 100144 |
|
Large margin metric learning based vehicle re-identification method |
Shi-lin ZHANG( ),Si-ming MA,Zi-qian GU |
Beijing Key Laboratory of Traffic Intelligent Control, North China University of Technology, Beijing 100144, China |
1 |
LIU X C, LIU W, MA H D, et al. Large-scale vehicle re-identification in urban surveillance videos [C]// IEEE International Conference on Multimedia and Expo. Seattle: IEEE, 2016: 1-6.
|
2 |
LIU X C. A deep learning-based approach to progressive vehicle re-identification for urban surveillance [C]// 2016 European Conference on Computer Vision. Netherlands: Springer, 2016: 869-884.
|
3 |
ZHANG Y, LIU D, ZHA Z J. Improving triplet-wise training of convolutional neural network for vehicle re-identification [C]// 2017 IEEE International Conference on Multimedia and Expo. Hongkong: IEEE, 2017: 1386-1391.
|
4 |
ZHOU K Y, YANG Y X, CAVALLARO A, et al. Omni-scale feature learning for person re-identification [C]// 2019 International Conference of Computer Vision. Seoul: IEEE, 2019: 3701-3711.
|
5 |
HE K M, ZHANG X Y. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Nevada: IEEE, 2016: 770-778.
|
6 |
BAI Y, LOU Y H, GAO F, et al Group-sensitive triplet embedding for vehicle re-identification[J]. IEEE Transactions on Multimedia, 2018, 2385- 2399
|
7 |
SIMONYAN K, ZISSERME N. Very deep convolutional networks for largescale image recognition [C]// 2015 International Conference on Learning Representations. San Diego: IEEE, 2015: 1-14.
|
8 |
CHU R H, SUN Y F. Vehicle re-identification with viewpoint-aware metric learning [C]// 2019 International Conference of Computer Vision. Seoul: IEEE, 2019: 8281-8290.
|
9 |
PIRAZ K. A dual-path model with adaptive attention for vehicle re-identification [C]// 2019 International Conference of Computer Vision. Seoul: IEEE, 2019: 6131-6140.
|
10 |
HE B. Part-regularized near-duplicate vehicle re-identification [C]// 2019 International Conference of Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3992-4000.
|
11 |
ZHU J Q Vehicle re-identification using quadruple directional deep learning features[J]. IEEE Transactions on Intelligent Transportation System, 2019, 21 (1): 410- 420
|
12 |
GUO H, ZHAO C. Learning coarse-to-fine structured feature embedding for vehicle re-identification [C]// 2018 the 32nd AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 6853-6860.
|
13 |
ZHENG Z, ZHENG L, YANG Y A discriminatively learned cnn embedding for personre-identification[J]. ACM Transactions on Multime-dia Computing, Communications, and Applications, 2017, 14 (1): 1- 20
|
14 |
LIU X, LIU W Provid: progressive and multimodal vehicle reidentification for large-scale urban surveillance[J]. IEEE Transactions on Multimedia, 2018, 20 (3): 645- 658
doi: 10.1109/TMM.2017.2751966
|
15 |
YU R, DOU Z, BAI S Hard-aware point-to-set deep metric for person re-identification[J]. Lecture Notes in Computer Science, 2018, 196- 212
|
16 |
CORTES C, VAPNIK V Support-vector networks[J]. Machine Learning, 1995, 20 (3): 273- 297
|
17 |
ZHONG Z, ZHENG L. Re-ranking person re-identification with k-reciprocal encoding [C]// 2017 International Conference of Computer Vision and Pattern Recognition. Honolulu: IEEE, 2019: 3652-3661.
|
18 |
LOU Y, BAI Y. Veri-wild: a large dataset and anew method for vehicle re-identification in the wild [C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2019: 3230-3238.
|
19 |
LIU H, TIAN Y. Deep relative distance learning: tell the difference between similar vehicles [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2019: 2167–2175.
|
20 |
MAATEN L, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Review, 2008, 9: 2579- 2605
|
21 |
LIU Y, TIAN Y. Deep relative distance learning: tell the difference between similar vehicles [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2019: 2167-2175.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|