计算机与控制工程 |
|
|
|
|
基于最大均值差异的多模态过程过渡模态识别方法 |
任超( ),阎高伟*( ),程兰,王芳 |
太原理工大学 电气与动力工程学院,山西 太原 030024 |
|
Transition mode identification method based on maximum mean discrepancy for multimode process |
Chao REN( ),Gao-wei YAN*( ),Lan CHENG,Fang WANG |
College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
任超,阎高伟,程兰,王芳. 基于最大均值差异的多模态过程过渡模态识别方法[J]. 浙江大学学报(工学版), 2021, 55(3): 563-570.
Chao REN,Gao-wei YAN,Lan CHENG,Fang WANG. Transition mode identification method based on maximum mean discrepancy for multimode process. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 563-570.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.017
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I3/563
|
1 |
杜文莉, 王坤, 钱锋 基于特征空间降维的溶剂脱水分离过程监控[J]. 浙江大学学报: 工学版, 2010, 44 (7): 1255- 1259 DU Wen-li, WANG Kun, QIAN Feng Feature space dimension-reduction based process monitoring of solvent dehydration separation process[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (7): 1255- 1259
|
2 |
赵立杰, 汤健, 柴天佑 基于选择性极限学习机集成的磨机负荷软测量[J]. 浙江大学学报: 工学版, 2011, 45 (12): 2088- 2092 ZHAO Li-jie, TANG Jian, CHAI Tian-you Soft sensor of mill load based on selective extreme learning machine ensemble[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (12): 2088- 2092
|
3 |
尤海辉, 马增益, 唐义军, 等 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报: 工学版, 2017, 51 (6): 1163- 1171 YOU Hai-hui, MA Zeng-yi, TANG Yi-jun, et al Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (6): 1163- 1171
|
4 |
谭帅, 王福利, 彭俊, 等 多模态过程中新模态过程建模方法[J]. 控制与决策, 2012, 27 (8): 1241- 1245 TAN Shuai, WANG Fu-li, PENG Jun, et al Modeling algorithm for new mode in multi-mode process[J]. Control and Decision, 2012, 27 (8): 1241- 1245
|
5 |
谭帅, 王福利, 常玉清, 等 基于差分分段PCA的多模态过程故障监测[J]. 自动化学报, 2010, 36 (11): 1626- 1636 TAN Shuai, WANG Fu-li, CHANG Yu-qing, et al Fault detection of multi-mode process using segmented PCA based on differential transform[J]. Acta Automatica Sinica, 2010, 36 (11): 1626- 1636
doi: 10.3724/SP.J.1004.2010.01626
|
6 |
YANG C, ZHOU L, HUANG K, et al Multimode process monitoring based on robust dictionary learning with application to aluminium electrolysis process[J]. Neurocomputing, 2019, 332: 305- 319
doi: 10.1016/j.neucom.2018.12.024
|
7 |
张雷, 张小刚, 陈华 基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J]. 化工学报, 2018, 69 (6): 2576- 2585 ZHANG Lei, ZHANG Xiao-gang, CHEN Hua Soft sensors for multi-stage batch processes based on Gath-Geva algorithm and kernel extreme learing machine[J]. CIESC Journal, 2018, 69 (6): 2576- 2585
|
8 |
DU W, FAN Y, ZHANG Y Multimode process monitoring based on data-driven method[J]. Journal of the Franklin Institute, 2017, 354 (6): 2613- 2627
doi: 10.1016/j.jfranklin.2016.11.002
|
9 |
HE Y, GE Z, SONG Z. Adaptive monitoring for transition process using dynamic mutual information similarity analysis [C]// 2016 Chinese Control and Decision Conference. Yinchuan: IEEE. 2016: 5832-5837.
|
10 |
ZHANG S, ZHAO C Stationarity test and Bayesian monitoring strategy for fault detection in nonlinear multimode processes[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 168: 45- 61
doi: 10.1016/j.chemolab.2017.07.010
|
11 |
JIANG Q, HUANG B, YAN X GMM and optimal principal components-based Bayesian method for multimode fault diagnosis[J]. Computers and Chemical Engineering, 2016, 84: 338- 349
doi: 10.1016/j.compchemeng.2015.09.013
|
12 |
LIU J, CHEN D S Nonstationary fault detection and diagnosis for multimode processes[J]. AIChE Journal, 2010, 56 (1): 207- 219
|
13 |
MA Y, SONG B, SHI H, et al Neighborhood based global coordination for multimode process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 139: 84- 96
doi: 10.1016/j.chemolab.2014.09.019
|
14 |
QUIN?ONES-GRUEIRO M, PRIETO-MORENO A, LLANES-SANTIAGO O Modeling and monitoring for transitions based on local kernel density estimation and process pattern construction[J]. Industrial and Engineering Chemistry Research, 2016, 55 (3): 692- 702
|
15 |
ZHENG Y, QIN S J, WANG F PLS-based similarity analysis for mode identification in multimode manufacturing processes[J]. IFAC-PapersOnLine, 2015, 48 (8): 777- 782
doi: 10.1016/j.ifacol.2015.09.063
|
16 |
张淑美, 王福利, 谭帅, 等 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42 (1): 60- 80 ZHANG Shu-mei, WANG Fu-li, TAN Shuai, et al A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica, 2016, 42 (1): 60- 80
|
17 |
SONG B, TAN S, SHI H Key principal components with recursive local outlier factor for multimode chemical process monitoring[J]. Journal of Process Control, 2016, 47: 136- 149
doi: 10.1016/j.jprocont.2016.09.006
|
18 |
HE Y, ZHOU L, GE Z, et al Dynamic mutual information similarity based transient process identification and fault detection[J]. The Canadian Journal of Chemical Engineering, 2018, 96 (7): 1541- 1558
doi: 10.1002/cjce.23102
|
19 |
谭帅. 多模态过程统计建模及在线监测方法研究[D]. 沈阳: 东北大学, 2012: 17-23. TAN Shuai. Statical modeling and online monitoring for multiple mode processes [D]. Shenyang: Northeastern University, 2012.
|
20 |
TAN S, WANG F, PENG J, et al Multimode process monitoring based on mode identification[J]. Industrial and Engineering Chemistry Research, 2012, 51 (1): 374- 388
|
21 |
LIU T, SHI Z, LIU Y Supervised dimensionality reduction on grassmannian for image set recognition[J]. Neural Computation, 2019, 31 (1): 156- 175
doi: 10.1162/neco_a_01148
|
22 |
GRETTON A, BORGWARDT K, RASCH M, et al. A kernel method for the two-sample-problem [C]// Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates, 2007: 513-520.
|
23 |
迟学斌 特征值问题的算法、复杂性及并行实现[J]. 数值计算与计算机应用, 1998, 19 (1): 28- 34 CHI Xue-bin Algorithm, complexity and parallel implementation of eigen-problems[J]. Numerical Calculation and Computer Applications, 1998, 19 (1): 28- 34
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|