Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (3): 563-570    DOI: 10.3785/j.issn.1008-973X.2021.03.017
计算机与控制工程     
基于最大均值差异的多模态过程过渡模态识别方法
任超(),阎高伟*(),程兰,王芳
太原理工大学 电气与动力工程学院,山西 太原 030024
Transition mode identification method based on maximum mean discrepancy for multimode process
Chao REN(),Gao-wei YAN*(),Lan CHENG,Fang WANG
College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
 全文: PDF(1350 KB)   HTML
摘要:

为了更好地揭示多模态过程的运行状态和数据分布变化规律,提高后续建模精度,提出基于最大均值差异(MMD)的多模态过程的过渡模态识别方法. 引入滑动窗口对数据进行切割,使用最大均值差异对多模态过程数据的分布差异进行度量,通过与稳定模态阈值α比较区分过程数据的稳定模态和过渡模态. 在过渡模态段内减小滑动窗口窗宽,利用过渡模态阈值β识别出过渡子模态. 数值仿真实验的模态识别结果表明,所提方法可以准确检测出输入变量期望值的阶跃变化,实现对模态的准确识别. 田纳西伊斯曼(TE)过程仿真数据实验表明,所提方法可以有效地划分出合理的模态,进而选择出分布最相近的历史模态建模,提高多模态过程的软测量建模精度.

关键词: 模态识别多模态过程最大均值差异数据分布滑动窗口    
Abstract:

A transition mode identification method based on maximum mean discrepancy (MMD) was proposed in order to better reveal the law of the operating state and the process data distributional variation of a multi-mode process, and further improve the accuracy of subsequent modeling. Firstly, the sliding window technique was introduced to segment process data, and the MMD was used to measure the distribution difference of the process data. The stable mode and transition mode of the process data were distinguished by comparing the MMD with the stable modal threshold α. Secondly, the width of the sliding window was reduced in transition mode segments, and a transition mode threshold β was used to identify the transition modes. The modal identification results of numerical simulation experiments show that the proposed method can achieve the goal of detecting the step change of the expected value of the input variables and identifying the transient modes. Tennessee Eastman (TE) process simulation data experiments show that the proposed method can effectively divide reasonable modes, select the historical mode modeling with the closest distribution, and improve the soft sensor modeling accuracy of multi-modal processes.

Key words: mode identification    multi-mode process    maximum mean discrepancy    data distribution    sliding window
收稿日期: 2019-10-15 出版日期: 2021-04-25
CLC:  TP 274  
基金资助: 国家自然科学基金资助项目(61973226,61603267);山西省科技重大专项资助项目(20181102017); 山西省重点研发计划项目(201903D121143)
通讯作者: 阎高伟     E-mail: m15988842972@163.com;yangaowei@tyut.edu.cn
作者简介: 任超(1996—),男,硕士生,从事过程建模研究. orcid.org/0000-0002-5191-8570. E-mail: m15988842972@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
任超
阎高伟
程兰
王芳

引用本文:

任超,阎高伟,程兰,王芳. 基于最大均值差异的多模态过程过渡模态识别方法[J]. 浙江大学学报(工学版), 2021, 55(3): 563-570.

Chao REN,Gao-wei YAN,Lan CHENG,Fang WANG. Transition mode identification method based on maximum mean discrepancy for multimode process. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 563-570.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.017        http://www.zjujournals.com/eng/CN/Y2021/V55/I3/563

图 1  基于MMD的多模态过程中的过渡模态识别示意图
定义模态 ${{{x}}_1}$服从分布 ${{{x}}_2}$服从分布
P $N(5,0.36)$ $N(20,0.49)$
PQ_1 $N(6,0.36)$ $N(20,0.49)$
PQ_2 $N(7,0.36)$ $N(20,0.49)$
PQ_3 $N(8,0.36)$ $N(20,0.49)$
PQ_4 $N(9,0.36)$ $N(20,0.49)$
Q $N(10,0.36)$ $N(20,0.49)$
表 1  数值仿真中的模态定义
图 2  数值仿真中5个输出变量变化示意图
图 3  模态在不同聚类方法下的识别结果
图 4  基于负载矩阵相似度及最大均值差异的模态识别结果分析
图 5  TE过程下15个过程变量过渡期间变化示意图
工况 方法 RMSE
浓度A 浓度B 浓度C
MMD-PLSR 0.221 2 0.118 2 0.251 1
GMM-PLSR 0.227 3 0.132 1 0.256 5
FCM-PLSR 0.246 8 0.198 7 0.267 9
Kmeans-PLSR 0.246 9 0.194 7 0.273 6
LMS-PLSR 0.247 4 0.282 5 0.288 6
MMD-PLSR 0.221 2 0.113 1 0.249 7
GMM-PLSR 0.228 8 0.113 8 0.268 4
FCM-PLSR 0.248 2 0.211 9 0.272 5
Kmeans-PLSR 0.247 4 0.205 5 0.274 4
LMS-PLSR 0.265 5 0.293 3 0.285 4
表 2  多模型软测量方法的均方根误差预测结果对比
1 杜文莉, 王坤, 钱锋 基于特征空间降维的溶剂脱水分离过程监控[J]. 浙江大学学报: 工学版, 2010, 44 (7): 1255- 1259
DU Wen-li, WANG Kun, QIAN Feng Feature space dimension-reduction based process monitoring of solvent dehydration separation process[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (7): 1255- 1259
2 赵立杰, 汤健, 柴天佑 基于选择性极限学习机集成的磨机负荷软测量[J]. 浙江大学学报: 工学版, 2011, 45 (12): 2088- 2092
ZHAO Li-jie, TANG Jian, CHAI Tian-you Soft sensor of mill load based on selective extreme learning machine ensemble[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (12): 2088- 2092
3 尤海辉, 马增益, 唐义军, 等 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报: 工学版, 2017, 51 (6): 1163- 1171
YOU Hai-hui, MA Zeng-yi, TANG Yi-jun, et al Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (6): 1163- 1171
4 谭帅, 王福利, 彭俊, 等 多模态过程中新模态过程建模方法[J]. 控制与决策, 2012, 27 (8): 1241- 1245
TAN Shuai, WANG Fu-li, PENG Jun, et al Modeling algorithm for new mode in multi-mode process[J]. Control and Decision, 2012, 27 (8): 1241- 1245
5 谭帅, 王福利, 常玉清, 等 基于差分分段PCA的多模态过程故障监测[J]. 自动化学报, 2010, 36 (11): 1626- 1636
TAN Shuai, WANG Fu-li, CHANG Yu-qing, et al Fault detection of multi-mode process using segmented PCA based on differential transform[J]. Acta Automatica Sinica, 2010, 36 (11): 1626- 1636
doi: 10.3724/SP.J.1004.2010.01626
6 YANG C, ZHOU L, HUANG K, et al Multimode process monitoring based on robust dictionary learning with application to aluminium electrolysis process[J]. Neurocomputing, 2019, 332: 305- 319
doi: 10.1016/j.neucom.2018.12.024
7 张雷, 张小刚, 陈华 基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J]. 化工学报, 2018, 69 (6): 2576- 2585
ZHANG Lei, ZHANG Xiao-gang, CHEN Hua Soft sensors for multi-stage batch processes based on Gath-Geva algorithm and kernel extreme learing machine[J]. CIESC Journal, 2018, 69 (6): 2576- 2585
8 DU W, FAN Y, ZHANG Y Multimode process monitoring based on data-driven method[J]. Journal of the Franklin Institute, 2017, 354 (6): 2613- 2627
doi: 10.1016/j.jfranklin.2016.11.002
9 HE Y, GE Z, SONG Z. Adaptive monitoring for transition process using dynamic mutual information similarity analysis [C]// 2016 Chinese Control and Decision Conference. Yinchuan: IEEE. 2016: 5832-5837.
10 ZHANG S, ZHAO C Stationarity test and Bayesian monitoring strategy for fault detection in nonlinear multimode processes[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 168: 45- 61
doi: 10.1016/j.chemolab.2017.07.010
11 JIANG Q, HUANG B, YAN X GMM and optimal principal components-based Bayesian method for multimode fault diagnosis[J]. Computers and Chemical Engineering, 2016, 84: 338- 349
doi: 10.1016/j.compchemeng.2015.09.013
12 LIU J, CHEN D S Nonstationary fault detection and diagnosis for multimode processes[J]. AIChE Journal, 2010, 56 (1): 207- 219
13 MA Y, SONG B, SHI H, et al Neighborhood based global coordination for multimode process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 139: 84- 96
doi: 10.1016/j.chemolab.2014.09.019
14 QUIN?ONES-GRUEIRO M, PRIETO-MORENO A, LLANES-SANTIAGO O Modeling and monitoring for transitions based on local kernel density estimation and process pattern construction[J]. Industrial and Engineering Chemistry Research, 2016, 55 (3): 692- 702
15 ZHENG Y, QIN S J, WANG F PLS-based similarity analysis for mode identification in multimode manufacturing processes[J]. IFAC-PapersOnLine, 2015, 48 (8): 777- 782
doi: 10.1016/j.ifacol.2015.09.063
16 张淑美, 王福利, 谭帅, 等 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42 (1): 60- 80
ZHANG Shu-mei, WANG Fu-li, TAN Shuai, et al A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica, 2016, 42 (1): 60- 80
17 SONG B, TAN S, SHI H Key principal components with recursive local outlier factor for multimode chemical process monitoring[J]. Journal of Process Control, 2016, 47: 136- 149
doi: 10.1016/j.jprocont.2016.09.006
18 HE Y, ZHOU L, GE Z, et al Dynamic mutual information similarity based transient process identification and fault detection[J]. The Canadian Journal of Chemical Engineering, 2018, 96 (7): 1541- 1558
doi: 10.1002/cjce.23102
19 谭帅. 多模态过程统计建模及在线监测方法研究[D]. 沈阳: 东北大学, 2012: 17-23.
TAN Shuai. Statical modeling and online monitoring for multiple mode processes [D]. Shenyang: Northeastern University, 2012.
20 TAN S, WANG F, PENG J, et al Multimode process monitoring based on mode identification[J]. Industrial and Engineering Chemistry Research, 2012, 51 (1): 374- 388
21 LIU T, SHI Z, LIU Y Supervised dimensionality reduction on grassmannian for image set recognition[J]. Neural Computation, 2019, 31 (1): 156- 175
doi: 10.1162/neco_a_01148
22 GRETTON A, BORGWARDT K, RASCH M, et al. A kernel method for the two-sample-problem [C]// Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates, 2007: 513-520.
23 迟学斌 特征值问题的算法、复杂性及并行实现[J]. 数值计算与计算机应用, 1998, 19 (1): 28- 34
CHI Xue-bin Algorithm, complexity and parallel implementation of eigen-problems[J]. Numerical Calculation and Computer Applications, 1998, 19 (1): 28- 34
[1] 伍晓顺,夏巨伟,胡岳芳. 基于跨模型模态应变能指标的网架结构损伤定位[J]. 浙江大学学报(工学版), 2020, 54(2): 248-256.
[2] 伍晓顺, 邓华, 孙桐海. 基于优化阶跃激励的索穹顶密集模态测试方法[J]. 浙江大学学报(工学版), 2018, 52(2): 288-296.
[3] 黄海燕,谢旭,吴冬雁,王荣富,王渊. 预应力混凝土部分斜拉桥的阻尼特性[J]. J4, 2012, 46(5): 804-810.
[4] 陈家乾, 何衍, 蒋静坪. 基于权值平滑的改良FastSLAM算法[J]. J4, 2010, 44(8): 1454-1459.
[5] 陈岭 陈根才. 一种用于数据分布管理的模糊DR算法[J]. J4, 2006, 40(9): 1521-1525.
[6] 肖清华 沈海斌 潘雪增. 区分服务中基于实时带宽估计的TCP友好标记器[J]. J4, 2005, 39(11): 1750-1755.