Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 2001-2008    DOI: 10.3785/j.issn.1008-973X.2020.10.018
能源工程、机械工程     
基于多场耦合分析的磁流变阻尼器建模与结构参数影响
黄腾逸(),周瑾*(),徐岩,孟凡许
南京航空航天大学 机电学院,江苏 南京 210016
Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters
Teng-yi HUANG(),Jin ZHOU*(),Yan XU,Fan-xu MENG
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(1974 KB)   HTML
摘要:

为了建立准确的阻尼器出力模型,在Bingham黏塑性模型的基础上增加线性弹簧单元描述磁流变液的黏弹塑性. 以双出杆剪切阀式磁流变阻尼器为研究对象,将上述模型引入多场耦合仿真中,结合磁场仿真得到的非均匀动态磁场,可得磁流变液的表观黏度分布,处理得到阻尼器在不同的输入激励与电流下的动态特性. 研究结果表明,相较于并联本构,依据串联本构建立的磁流变阻尼器仿真模型与试验结果具有更好的一致性. 根据理论与仿真分析各结构参数对阻尼器磁场及阻尼器出力及其可调范围的影响,计算各参数对阻尼器出力的灵敏度. 结果表明,阻尼间隙与活塞直径对阻尼器的出力影响较大,其中活塞直径的影响最大,峰值灵敏度指标与均值灵敏度指标分别为84.66%和94.51 N.

关键词: 磁流变阻尼器多场耦合黏弹塑性本构模型示功特性灵敏度分析    
Abstract:

A linear spring element was added to Bingham viscoplastic model to describe the viscoelastic plasticity of MR fluid in order to establish an accurate model for damper output. The above model was introduced into the multi-field coupling simulation by taking a shear and valve type magnetorheological (MR) damper with two-way push-over bar as the research object. The non-uniform dynamic magnetic field obtained by the magnetic field simulation was used to obtain the apparent viscosity distribution of MR fluid. Then the dynamic characteristics of the damper under different input excitation and current were obtained by post-processing. Results show that the simulation model of MR damper based on the series constitutive model is better consistent with the test results than the parallel constitutive model. The influence of each structural parameter on the damper magnetic field, the damper output and its adjustable range was analyzed according to the theory and simulation. The sensitivity of each parameter to the damper output was calculated. Results show that the gap of damper and piston diameter have great influence on the output of the damper, among which the piston diameter has the greatest influence, and the peak sensitivity index and average sensitivity index are 84.66% and 94.51 N respectively.

Key words: magnetorheological damper    multi-field coupling    viscoelastic-plastic constitutive model    indicator characteristics    sensitivity analysis
收稿日期: 2019-09-24 出版日期: 2020-10-28
CLC:  TH 137  
基金资助: 江苏高校‘青蓝工程’资助项目
通讯作者: 周瑾     E-mail: 2893406081@qq.com;zhj@nuaa.edu.cn
作者简介: 黄腾逸(1995—),男,硕士,从事阻尼减振研究. orcid.org/0000-0002-5642-4094. E-mail: 2893406081@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄腾逸
周瑾
徐岩
孟凡许

引用本文:

黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.

Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.018        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/2001

图 1  Bingham本构模型
图 2  并联本构模型
图 3  串联本构模型
图 4  磁流变阻尼器磁路结构的示意图
图 5  导磁体磁路分布示意图
图 6  剪切阀式磁流变阻尼器结构示意图
图 7  剪切阀式磁流变阻尼器实物图
图 8  各磁性材料的B-H关系图
图 9  t=0 s时磁流变阻尼器的磁场分布
图 10  t=0.125 s时磁流变阻尼器的磁场分布
图 11  磁流变液剪切屈服强度与磁场强度的关系曲线
图 12  阻尼通道处磁流变液的状态
图 13  导入的磁流变液磁感应强度分布云图
图 14  磁流变液磁致剪切屈服强度分布云图
图 15  剪切阀式磁流变阻尼器示功实验
图 16  f=2 Hz,A=0.5 mm,I=0.3 A时的示功图
图 17  f=2 Hz,A=3 mm,I=0.3 A时的示功图
图 18  f=4 Hz,A=0.5 mm,I=0.3 A时的示功图
图 19  f=4 Hz,A=0.5 mm,I=1.2 A时的示功图
图 20  I=0 A时阻尼器最大出力随各结构参数的变化趋势
图 21  I=2 A时阻尼器的最大出力随各结构参数的变化趋势
图 22  阻尼器的可调倍数随各结构参数的变化趋势
图 23  各参数的峰值灵敏度指标
图 24  各参数的均值灵敏度指标
1 SHAMES I H, COZZARELLI F A. Elastic and inelastic stress analysis [M]. Englewood Cliffs: Prentice Hall, 1992.
2 FERRáS L L, FORD N J, MORGADO M L, et al. A primer on experimental and computational rheology with fractional viscoelastic constitutive models [C] // American Institute of Physics Conference Series. Zlín, Czech Republic: American Institute of Physics, 2017: 1-13.
3 陈丙三, 黄宜坚 分数阶在磁流变液性能研究中的应用[J]. 华侨大学学报: 自然科学版, 2009, 30 (5): 487- 491
CHEN Bing-san, HUANG Yi-jian Application of fractional order in the study of Magnetorheological fluid properties[J]. Journal of Huaqiao University: Natural Science, 2009, 30 (5): 487- 491
4 PENG X Q, SHI F, DAI Y F Magnetorheological fluids modelling: without the no-slip boundary condition[J]. International Journal of Materials and Product Technology, 2008, 31 (1): 27- 35
5 蔡路. 磁流变阻尼器设计、仿真与试验研究[D]. 成都: 西南交通大学, 2015: 23-38.
CAI Lu. Research on the design, simulation and test of MR damper [D]. Chengdu: Southwest Jiaotong University, 2015: 23-38.
6 PAUL M D, MOINUDDIN M A, ISLAM M M N Finite element analysis and simulation of a magneto - rheological damper[J]. International Journal for Innovative Research in Science and Technology, 2014, 1 (5): 12- 19
7 KAZAKOV Y B, MOROZOV N A, NESTEROV S A Development of models of the magnetorheological fluid damper[J]. Journal of Magnetism and Magnetic Materials, 2016, 431: 269- 272
8 KHAN S A, HAKEEMUDIN A, AHMED A M, et al Experimentation and simulation of smart fluid damper[J]. International Journal on Mechanical Engineering and Robotics, 2016, 4 (4): 56- 60
9 XIN D K, NIE S L, JI H, et al Characteristics, optimal design, and performance analyses of MRF damper[J]. Shock and Vibration, 2018, (3): 1- 17
10 于振环, 刘顺安, 张娜, 等 磁流变减振器多场耦合仿真分析[J]. 农业机械学报, 2014, (1): 1- 7
YU Zhen-huan, LIU Shun-an, ZHANG Na, et al Multifield coupling simulation analysis of magnetorheological shock absorber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, (1): 1- 7
doi: 10.6041/j.issn.1000-1298.2014.01.001
11 FATHIMA S, MUTHALIF A G A, RAISUDDIN KHAN M Investigation of annular gap size for optimizing the dynamic range of MR damper using comsol multiphysics software[J]. Applied Mechanics and Materials, 2014, 606: 187- 192
doi: 10.4028/www.scientific.net/AMM.606.187
12 GURUBASAVARAJU T M, KUMAR H, MAHALINGAM A An approach for characterizing twin-tube shear-mode magnetorheological damper through coupled FE and CFD analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40 (3): 139
doi: 10.1007/s40430-018-1066-z
13 PARLAK Z, ENGIN T, ?ALL? ? Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field[J]. Mechatronics, 2012, 22 (6): 890- 903
doi: 10.1016/j.mechatronics.2012.05.007
14 陈昭晖, 倪一清 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1551- 1558
CHEN Zhao-hui, NI Yi-qing Real-time damping force tracking control of self-sensing magnetorheological dampers[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1551- 1558
15 周强, 瞿伟廉 磁流变阻尼器的两种力学模型和试验验证[J]. 地震工程与工程振动, 2002, 22 (4): 144- 150
ZHOU Qiang, QU Wei-lian Two kinds of mechanical models and experimental verification of magnetorheological dampers[J]. Earthquake Engineering and Engineering Vibration, 2002, 22 (4): 144- 150
doi: 10.3969/j.issn.1000-1301.2002.04.024
16 GINDER J M, PARTHASARATHY M. Magnetic properties of magnetorheological fluids [M] //周云.磁流变阻尼控制理论与技术.北京: 科学出版社, 2007: 36-39.
17 张红辉, 廖昌荣, 陈伟民, 等 磁流变阻尼器磁路设计及磁饱和有限元分析[J]. 功能材料与器件学报, 2004, (4): 96- 100
ZHANG Hong-hui, LIAO Chang-rong, CHEN Wei-min, et al Magnetic circuit design and magnetic saturation finite element analysis of magnetorheological dampers[J]. Journal of Functional Materials and Devices, 2004, (4): 96- 100
18 何小伟, 吴天行, 王誉蓉 混有空气的孔隙式粘滞流体阻尼器模型及性能研究[J]. 振动与冲击, 2014, 33 (1): 95- 100
HE Xiao-wei, WU Tian-xing, WANG Yu-rong Study on the model and performance of porous viscous fluid dampers mixed with air[J]. Journal of Vibration and Shock, 2014, 33 (1): 95- 100
doi: 10.3969/j.issn.1000-3835.2014.01.016
19 安晨亮, 马金玉, 王嘉维, 等 磁流变阻尼器输出阻尼力灵敏度分析[J]. 机电工程, 2018, 35 (11): 7- 14
AN Chen-liang, MA Jin-yu, WANG Jia-wei, et al Output damping force sensitivity analysis of MR damper[J]. Journal of Mechanical and Electrical Engineering, 2018, 35 (11): 7- 14
[1] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[2] 程锋,张栋,唐硕. 高超声速运载器宽速域气动/推进耦合建模与分析[J]. 浙江大学学报(工学版), 2019, 53(5): 1006-1018.
[3] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[4] 夏能, 颉俊, 张承谦, 赵朋, 傅建中. 抗磁性物质的磁悬浮仿真及密度测量[J]. 浙江大学学报(工学版), 2018, 52(3): 473-478.
[5] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[6] 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 一移两转平板折展柔性铰链的建模及优化[J]. 浙江大学学报(工学版), 2017, 51(12): 2399-2407.
[7] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(7): 2-.
[8] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(12): 2115-2122.
[9] 杨剑,王智化,张彦威,陈云,周俊虎,岑可法. 热化学硫碘开路循环制氢系统的设计与模拟[J]. J4, 2011, 45(5): 869-877.
[10] 肖宝兰, 俞小莉, 韩松, 陆国栋, 夏立峰. 基于神经网络的换热器翅片参数灵敏度分析[J]. J4, 2011, 45(1): 122-125.
[11] 梁利华 刘勇 徐博侯. 混合硬化弹黏塑性边界元灵敏度分析[J]. J4, 2006, 40(5): 910-915.