Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (12): 2342-2348    DOI: 10.3785/j.issn.1008-973X.2018.12.012
水利工程     
埋入式塑料光纤与混凝土间的应变传递分析
包腾飞1, 李涧鸣1, 赵津磊2
1. 河海大学 水文水资源与水利工程科学国家重点实验室 水利水电学院, 江苏 南京 210098;
2. 江苏省水利勘测设计研究院有限公司, 江苏 扬州 225127
Strain transfer analysis between embedded plastic optical fibers and concretes
BAO Teng-fei1, LI Jian-ming1, ZHAO Jin-lei2
1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, National Engineering, College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;
2. Jiangsu Surveying and Design Institute of Water Resources Co. Ltd, Yangzhou 225127, China
 全文: PDF(1079 KB)   HTML
摘要:

推导埋入式塑料光纤(POF)—混凝土复合体中各相材料间的应变传递模型,并通过有限元数值仿真验证模型的正确性.基于该模型对主要参数进行敏感性分析,分别分析塑料光纤涂覆层的弹性模量、厚度,纤芯弹性模量以及埋设长度对应变传递率的影响.数值仿真计算结果与理论分析基本一致,塑料光纤埋设段中间大部分区域的应变传递率接近于1,说明混凝土内部的应变可有效传递至塑料光纤纤芯.敏感性分析表明,使涂覆层厚度小于0.5 mm,弹性模量大于100 MPa,埋设长度大于300 mm,有利于埋入式塑料光纤与混凝土之间的应变传递.

Abstract:

The theoretical strain transfer model between embedded plastic optical fibers (POF) and concrete was developed and verified by numerical simulation using finite element method. Parametric sensitivity analysis was performed for the main parameters based on the strain transfer model. The influence of the elastic modulus and coatings thickness, the elastic modulus of the fiber core and the embedment fiber length on strain transfer rate was analyzed, respectively. The numerical simulation results agree well with the proposed theory, and the strain transmissibility of most areas of embedded plastic optical fibers is close to 1, indicating that the strain in concrete can be transferred to the plastic optical fiber core. The results of sensitivity analysis show that the strain transfer effect of embedded plastic optical fibers and concretes is better when the thickness of coatings is less than 0.5 mm, the elastic modulus of coatings is more than 100 MPa and the embedment length is more than 300 mm.

收稿日期: 2017-12-01 出版日期: 2018-12-13
CLC:  TV698.1  
基金资助:

国家重点研发计划资助项目(2016YFC0401601);国家自然科学基金资助项目(51579086,51739003,51479054,51379068,41323001);中央高校基本科研业务费专项资金资助项目(2018B623X14);江苏省杰出青年基金资助项目(BK20140039);江苏省研究生科研与实践创新计划资助项目(KYCX18_0592);江苏高校优势学科建设工程资助项目(水利工程)(YS11001)

作者简介: 包腾飞(1974-),男,教授,博导,从事水工建筑物安全监控、评估及反馈分析、光纤传感器在结构健康监测中的应用研究.orcid.org/0000-0002-1345-0372.E-mail:baotf@hhu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

包腾飞, 李涧鸣, 赵津磊. 埋入式塑料光纤与混凝土间的应变传递分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2342-2348.

BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2342-2348.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.12.012        http://www.zjujournals.com/eng/CN/Y2018/V52/I12/2342

[1] BARRIAS A, CASAS J R, VILLALBA S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 2016, 16(5):748.
[2] LEUNG C K Y, WAN K T, INAUDI D, et al. Optical fiber sensors for civil engineering applications[J]. Materials and Structures, 2015, 48(4):871-906.
[3] AHMAD S, HUSAIN S M A, ANWAR A, et al. Application of fiber optic sensors in civil engineering[J]. International Journal of Engineering Innovation and Research, 2015, 4(3):526-529.
[4] YE X, SU Y, HAN J. Structural health monitoring of civil infrastructure using optical fiber sensing technology:a comprehensive review[J]. The Scientific World Journal, 2014, 2014:65329.
[5] BAO T. Distributed fiber bragg grating sensors for monitoring cracks in concrete structures[C]//Thirteenth ASCE Aerospace Division Conference on Engineering, Science, Construction, and Operations in Challenging Environments, and the 5th NASA/ASCE Workshop on Granular Materials in Space Exploration. Pasadena:ASCE, 2012:1290-1399.
[6] LIEHR S, LENKE P, WENDT M, et al. Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring[J]. IEEE Sensors Journal, 2009, 9(11):1330-1338.
[7] ZHANG C, ZHU H, SHI B, et al. Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring[J]. Smart Structures and Systems, 2016, 17(2):297-311.
[8] LUO D, YUE Y, LI P, et al. Concrete beam crack detection using tapered polymer optical fiber sensors[J]. Measurement, 2016, 88:96-103.
[9] 包腾飞, 赵津磊, 戚丹. 塑料光纤在裂缝监测中的性能[J]. 光子学报, 2015, 44(10):82-87 BAO Teng-fei, ZHAO Jin-lei, QI Dan. Properties of plastic optical fibers in crack monitoring[J]. Acta Photonica Sinica, 2015, 44(10):82-87
[10] ZHAO J, BAO T, CHEN R. Crack monitoring capability of plastic optical fibers for concrete structures[J]. Optical Fiber Technology, 2015(24):70-76.
[11] 赵津磊, 包腾飞, 戚丹. 塑料光纤在裂缝监测中应用的可行性研究[J]. 光电子. 激光, 2014, 25(10):1943-1948 BAO Teng-fei, ZHAO Jin-lei, QI Dan. Feasibility study on application of plastic optical fiber in monitoring[J]. Journal of Optoelectronics. Laser, 2014, 25(10):1943-1948
[12] 赵津磊, 包腾飞, 戚丹. 基于塑料光纤裂缝传感器的裂缝开度预测[J]. 水电能源科学, 2015, 2(33):131-134 BAO Teng-fei, ZHAO Jin-lei, QI Dan. Prection of crack width based on plastic optical fiber crack sensor[J]. Water Resources and Power, 2015, 2(33):131-134
[13] PAK Y E. Longitudinal shear transfer in fiber optic sensors[J]. Smart Materials and Structures, 1992, 1(1):57-62.
[14] ANSARI F, LIBO Y. Mechanics of bond and interface shear transfer in optical fiber sensors[J]. Journal of Engineering Mechanics, 1998, 124(4):385-394.
[15] LI Q, LI G, WANG G, et al. Elasto-plastic bonding of embedded optical fiber sensors in concrete[J]. Journal of Engineering Mechanics, 2002, 128(4):471-478.
[16] 李东升, 李宏男. 埋入式封装的光纤光栅传感器应变传递分析[J]. 力学学报, 2005, 37(4):435-441 LI Dong-sheng, LI Hong-nan. Strain transferring analysis of embedded fiber Bragg grating sensors[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4):435-441
[17] SUN L, HAO H, ZHANG B, et al. Strain transfer analysis of embedded fiber Bragg grating strain sensor[J]. Journal of Testing and Evaluation, 2015, 44(6):2312-2320.
[18] 吴永红, 邵长江, 屈文俊, 等. 传感光纤光栅标准化埋入式封装的理论与实验研究[J]. 中国激光, 2010, 37(5):1290-1293 WU Yong-hong, SHAO Chang-jiang, QU Wen-jun, et al. Basic theoretical model and its experimental investigation for standard embedded sensing fiber Bragg grating packaging[J]. Chinese Journal of Lasers, 2010, 37(5):1290-1293
[19] 吴入军, 郑百林, 贺鹏飞, 等. 埋入式光纤布拉格光栅传感器封装结构对测量应变的影响[J]. 光学精密工程, 2014, 22(1):24-30 WU Ru-jun, ZHENG Bai-lin, HE Peng-fei, et al. Influence of encapsulation structures for embedded fiber-optic Bragg grating sensors on strain measurement[J]. Optics and Precision Engineering, 2014, 22(1):24-30
[20] 周智, 王倩, 郝孝伟, 等. 考虑混凝土基体蠕变的FBG传感器应变传递研究[J]. 中国测试, 2016, 42(5):1-5 ZHOU Z, WANG Q, HAO X. Strain transfer analysis of the FBG sensor considering the creep of the concrete host[J]. China Measurement and Test, 2016, 42(5):1-5
[21] HER S C, HUANG C Y. Effect of coating on the strain transfer of optical fiber sensors[J]. Sensors, 2011, 11(7):6926-6941.
[22] CHANG X, LI M. Study on strain transfer of polymer optical fiber grating sensors[C]//International Symposium on Photoelectronic Detection and Imaging 2009:Material and Device Technology for Sensors. Beijing:SPIE, 2009:73811P.
[23] 常新龙, 李明, 王渭平, 等. 埋入式聚合物光纤传感器应变传递影响参数分析[J]. 激光与红外, 2010, 40(5):515-519 CHANG Xin-long, LI Ming, WANG Wei-ping. Analyses of parameters influencing strain transfer of embedded polymer optical fiber sensors[J]. Laser and Infrared, 2010, 40(5):515-519

No related articles found!