Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (9): 1651-1657    DOI: 10.3785/j.issn.1008-973X.2018.09.004
土木与水利工程     
近断层滑冲效应脉冲地震动对场地液化的影响
董文悝1,2, 高广运1, 宋健3, 薛帅4
1. 同济大学 地下建筑与工程系岩土及地下工程教育部重点实验室, 上海 200092;
2. 悉尼科技大学 土木与环境工程学院, 悉尼 NSW 2007;
3. 河海大学土木与交通学院, 江苏 南京 210098;
4. 帝国理工学院, 伦敦 SW7 2AZ
Effect of near-fault pulse-like ground motion with fling-step on site liquefaction
DONG Wen-kui1,2, GAO Guang-yun1, SONG Jian3, XUE Shuai4
1. Department of Geotechnical, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education Engineering, Tongji University, Shanghai 200092, China;
2. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney NSW 2007, Australia;
3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;
4. Imperial College London, London SW7 2AZ, England
 全文: PDF(1141 KB)   HTML
摘要:

利用开源有限元平台OpenSees,建立一个20 m长的土柱模拟自由场地的地震响应.通过分析近断层滑冲效应脉冲地震动作用下场地产生的变形、应力,结合其地震动持时,衡量滑冲效应脉冲地震动对场地液化的影响.研究表明,滑冲效应脉冲地震动由于其独特的脉冲特性,较无脉冲地震动使土柱产生更大的孔隙水压力比、循环应力比,相应的等效循环周数值也较大,这三方面共同增大了场地发生液化的可能性.滑冲效应脉冲地震动产生的高孔压持续时间较短,使液化后的变形量较小.

Abstract:

A soil column of 20 m was established to simulate the seismic responses of free site by using the open source finite element software OpenSees. Then the influence of fling-step effect on site liquefaction was evaluated by the stress and strain induced in the soil column, coupling with the collected ground motion duration of each simulation. Results show that the ground motion with fling-step effect is more likely to induce larger pore water pressure ratio and cycle stress ratio than non-pulse ground motions due to its special pulse characteristics. Besides, the ground motion with fling-step effect could generate higher number of equivalent cycles in comparison to the non-pulse motions. All these factors increase the occurrence of site liquefaction and cause a larger permanent vertical deformation. However, the ground motion with fling-step effect induced high pore pressure duration is relatively limited, which is detrimental to the liquefaction deformation.

收稿日期: 2017-06-22 出版日期: 2018-09-20
CLC:  TU434  
基金资助:

国家自然科学基金资助项目(41372271)

通讯作者: 高广运,男,教授.orcid.org/0000-0001-9396-9432.     E-mail: 高广运,男,教授.orcid.org/0000-0001-9396-9432.E-mail:gaoguangyun@263.net
作者简介: 董文悝(1991-),男,硕士生,从事土动力学研究.orcid.org/0000-0002-1170-2249.E-mail:727805750@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

董文悝, 高广运, 宋健, 薛帅. 近断层滑冲效应脉冲地震动对场地液化的影响[J]. 浙江大学学报(工学版), 2018, 52(9): 1651-1657.

DONG Wen-kui, GAO Guang-yun, SONG Jian, XUE Shuai. Effect of near-fault pulse-like ground motion with fling-step on site liquefaction. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1651-1657.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.09.004        http://www.zjujournals.com/eng/CN/Y2018/V52/I9/1651

[1] 刘启方, 袁一凡, 金星, 等. 近断层地震动的基本特征[J]. 地震工程与工程振动, 2006, 26(1):1-10 LIU Qi-fang, YUAN Yi-fan, JIN Xing, et al. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(1):1-10
[2] 冯启民, 邵广彪. 近断层地震动速度、位移峰值衰减规律的研究[J]. 地震工程与工程振动, 2004, 24(4):13-19 FENG Qi-ming, SHAO Guang-biao. Research on attenuation of near fault peak strong ground motion velocity and displacement[J]. Earthquake Engineering and Engineering Vibration, New Zealand, 2004, 24(4):13-19
[3] 潘波, 许建东, 关口春子, 等. 北京地区近断层强地震动模拟[J]. 地震地质, 2006, 28(4):623-634 PAN Bo, XU Jian-dong, GUAN Kou-chun-zi, et al. Simulation of the near-fault strong ground motion in Beijing region[J]. Seismology and Geology, 2006, 28(4):623-634
[4] 胡进军, 谢礼立. 地震破裂的方向性效应相关概念综述[J]. 地震工程与工程振动, 2011, 31(4):1-8 HU Jin-jun, XIE Li-li. Review of rupture directivity related concepts in seismology[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(4):1-8
[5] RODRIGUEZ-MAREK A, BRAY J D. Seismic site response for near-fault forward directivity ground motions[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(12):1611-1620.
[6] 杨迪雄, 赵岩. 近断层地震动破裂向前方向性与滑冲效应对隔震建筑结构抗震性能的影响[J]. 地震学报, 2010, 32(5):579-587 YANG Di-xiong, ZHAO Yan. Effects of rupture forward directivity and fling step of near-fault ground motions on seismic performance of base-isolated building structure[J]. Acta Seismologica Sinica, 2010, 32(5):579-587
[7] 江义, 杨迪雄, 李刚. 近断层地震动向前方向性效应和滑冲效应对高层钢结构地震反应的影响[J]. 建筑结构学报, 2010, 31(9):103-110 JIANG Yi, YANG Di-xiong, LI Gang. Effects of forward directivity and fling step of near-fault ground motions on seismic responses of high-rise steel structure[J]. Journal of Building Structures, 2010, 31(9):103-110
[8] 陶连金, 王文沛, 张波, 等. 近断层地震动破裂向前方向性与滑冲效应对典型地铁车站结构动力响应的影响[J]. 地震工程与工程振动, 2011, 31(6):34-44 TAO Lian-jin, WANG Wen-pei, ZHANG Bo, et al. Effects of rupture forward directivity and fling step of near-fault ground motions on dynamic responses of representative subway station structure[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(6):34-44
[9] KALKAN E, KUNNATH S K. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 2006, 22(2):367-390.
[10] 宋健, 高广运, 陈青生, 等. 近断层地震动作用下土质边坡动力响应研究[J]. 地震工程学报, 2013, 35(1):62-68 SONG Jian, GAO Guang-yun, CHEN Qing-sheng, et al. Dynamic response of soil slope under near-fault ground motion[J]. China Earthquake Engineering Journal, 2013, 35(1):62-68
[11] 宋健, 高广运. 近断层速度脉冲地震动对边坡滑移的影响分析[J]. 岩石力学与工程学报, 2014, 33(2):317-326 SONG Jian, GAO Guang-yun. Sliding displacement of slopes under near-fault pulse-like ground motions[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2):317-326
[12] 贾俊峰, 杜修力, 韩强. 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报, 2015, 36(1):1-12 JIA Jun-feng, DU Xiu-li, HAN Qiang. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J]. Journal of Building Structure, 2015, 36(1):1-12
[13] GREEN R A, LEE J, WHITE T M. The significance of near-fault effects on liquefaction[C]//The 14th World Conference on Earthquake Engineering. Beijing:WCEE, 2008:1486-1501.
[14] CARTER L, GREEN R, BRADLEY B, et al. The influence of near-fault motions on liquefaction triggering during the Canterbury earthquake sequence[C]//Soil Liquefaction during Recent Large-Scale Earthquakes, CRC press, Auckland. 2014:57.
[15] 王睿, 张建民, 王刚. 砂土液化大变形本构模型的三维化及其数值实现[J]. 地震工程学报, 2013, 35(1):91-97 WANG Rui, ZHANG Jian-min, WANG Gang. Multiaxial formulation and numerical implementation of a constitutive model for the evaluation of large liquefaction-induced deformation[J]. China Earthquake Engineering Journal, 2013, 35(1):91-97
[16] PHILLIPS C, HASHASH Y M A, OLSON S M, et al. Significance of small strain damping and dilation parameters in numerical modeling of free-field lateral spreading centrifuge tests[J]. Soil Dynamics & Earthquake Engineering, 2012, 42:161-176.
[17] YANG Z, LU J, ELGAMAL A. OpenSees soil models and solid-fluid fully coupled elements:user's manual[M]. San Diego:University of California, 2008:21-22.
[18] YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10):817-833.
[19] GREEN R A, MITCHELL J K. Energy-based evaluation and remediation of liquefiable soils[M]. Los Angeles:ASCE, 2004:1961-1970.
[20] SEED H B, IDRISS I M. Ground motions and soil liquefaction during earthquakes[M]. Berkeley:Earthquake Engineering Research Institute, 1982:134.
[21] GREEN R A, TERRI G A. Number of equivalent cycles concept for liquefaction evaluations-revisited[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4):477-488.

No related articles found!