Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (8): 1633-1639    DOI: 10.3785/j.issn.1008-973X.2017.08.020
机械与能源工程     
Gedeon声直流对四级行波热声发动机性能的影响
黎明, 封叶, 汤珂, 金滔
浙江大学 浙江省制冷与低温技术重点实验室, 浙江 杭州 310027
Influence of Gedeon streaming on performance of four-stage travelling-wave thermoacoustic engine
LI Ming, FENG Ye, TANG Ke, JIN Tao
Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University Hangzhou 310027, China
 全文: PDF(1120 KB)   HTML
摘要:

为了研究Gedeon声直流对具有环路结构的四级行波热声发动机热效率的影响,基于热声学理论,在给定加热功率以及热声核入口参数的条件下,对不同Gedeon声直流下热声发动机内热声核进行模拟,探究Gedeon声直流对热声核的声场分布包括温度分布、体积流速振幅分布、压力振幅分布、压力与速度相位差分布、声功率分布以及总能流率分布的影响,针对Gedeon声直流对回热器以及热缓冲管内温度梯度的影响机制进行分析.结果表明,Gedeon声直流携带的能流是影响温度梯度的关键因素,给出Gedeon声直流对四级行波热声发动机热效率影响的定量评估.

Abstract:

A thermoacoustic core with various amount of Gedeon streaming under given heating power and inlet conditions was simulated based on the thermoacoustic theory in order to analyze the influence of Gedeon streaming on the performance of a four-stage thermoacoustic engine with looped configuration. The characteristics of acoustic field inside the thermoacoustic core, including the profiles of temperature, volumetric velocity amplitude, pressure amplitude, phase difference between pressure oscillation and velocity oscillation, acoustic power and total energy flow rate were calculated and analyzed. The mechanism of Gedeon streaming affecting the temperature profiles inside the regenerator and the thermal buffer tube was analyzed. Results show that the energy flow rate carried by the Gedeon streaming is the key factor in the local temperature gradient. The influence of Gedeon streaming on the thermal efficiency of the four-stage travelling-wave thermoacoustic engine was quantitatively evaluated.

收稿日期: 2016-05-30 出版日期: 2017-08-16
CLC:  TB51  
基金资助:

国家自然科学基金资助项目(51376158,51276154).

通讯作者: 汤珂,男,副教授.ORCID:0000-0002-6452-9697.     E-mail: ktang@zju.edu.cn
作者简介: 黎明(1993-),男,硕士生,从事热声热机等研究.ORCID:0000-0002-4287-9549.E-mail:lmcq_1993@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

黎明, 封叶, 汤珂, 金滔. Gedeon声直流对四级行波热声发动机性能的影响[J]. 浙江大学学报(工学版), 2017, 51(8): 1633-1639.

LI Ming, FENG Ye, TANG Ke, JIN Tao. Influence of Gedeon streaming on performance of four-stage travelling-wave thermoacoustic engine. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(8): 1633-1639.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.08.020        http://www.zjujournals.com/eng/CN/Y2017/V51/I8/1633

[1] CEPERLEY P H. A pistonless Stirling engine-the traveling wave heat engine[J]. Journal of the Acoustical Society of America, 1979, 66(5):1508-1513.
[2] BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine[J]. Nature, 1999, 399:335-338.
[3] YU G, LUO E, DAI W, et al. An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40[J]. Cryogenics, 2007, 47(2):132-137.
[4] JIN T, MAO C, TANG K, et al. Characteristics study on the oscillation onset and damping of a traveling-wave thermoacoustic prime mover[J]. Journal of Zhejiang University:Science A, 2008, 9(7):944-949.
[5] TIJANI M E H, SPOELSTRA S. A high performance thermoacoustic engine[J]. Journal of Applied Physics, 2011, 110(9):093519.
[6] GEDEON D. DC gas flows in Stirling and pulse tube cryocoolers[C]//Cryocoolers 9. New York:Plenum Press, 1997:385-392.
[7] BACKHAUS S, SWIFT G W. A Thermoacoustic-stirling heat engine:detailed study[J]. Journal of the Acoustical Society of America, 2000, 107(6):3148-3166.
[8] BIWA T, TASHIRO Y, ISHIGAKI M, et al. Measurements of acoustic streaming in a looped-tube thermoacoustic engine with a jet pump[J]. Journal of Applied Physics, 2007,101(6):064914(1-5).
[9] GUSEV V, JOB S, BAILLIET H, et al. Acoustic streaming in annular thermoacoustic prime-movers[J]. The Journal of the Acoustical Society of America, 2000, 108(3):934-945.
[10] YU G Y, LUO E C, DAI W, et al. Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics[J]. Journal of Applied Physics, 102(7):074901.
[11] WANG B, QIU L M, SUN D, et al. Visualization observation of onset and damping behaviors in a traveling-wave thermoacoustic engine by infrared imaging[J]. International Journal of Heat and Mass Transfer, 2011, 54(23):5070-5076.
[12] WANG C, THUMMES G, HEIDEN C. Control of DC gas flow in a single-stage double-inlet pulse tube cooler[J]. Cryogenics, 1998, 38(8):843-847.
[13] DE BLOK K. Novel 4-Stage Traveling Wave Thermoacoustic Power Generator[C]//In ASME 20103rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers. Montreal:[s. n.], 2010:73-79.
[14] DE BLOK K. Multi-stage traveling wave thermoacoustics in Practice[C]//19th International Congress on Sound and Vibration. Vilnius:[s. n.], 2012:1-8.
[15] SWIFT G W, GARRETT S L. Thermoacoustics:Aunifying perspective for some engines and refrigerators[J]. Journal of the Acoustical Society of America, 2003, 113(5):2379-2381.
[16] CLARK J P, WARD W C, SWIFT G W. Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC)[J]. Journal of the Acoustical Society of America, 2007, 122(5):3014-3014.
[17] SWIFT GW, WARD WC. Simple harmonic analysis of regenerators[J]. Journal of Thermophysics and Heat Transfer, 1996, 10:652-662.

[1] 李亦健, 吴舒琴, 金滔. 低温浆体电容式液位计的优化及实验[J]. 浙江大学学报(工学版), 2018, 52(5): 966-970.