Please wait a minute...
浙江大学学报(工学版)
电气工程     
基于三线圈合成算法的WPT-EV拾取定位技术
孙跃, 贾鑫, 唐春森
重庆大学 自动化学院,重庆 400030
Pick-up position detection for WPT-EV based on three-coil synthesis algorithm
SUN Yue, JIA Xin, TANG Chun-sen
College of Automation, Chongqing University, Chongqing 400030, China
 全文: PDF(1605 KB)   HTML
摘要:

针对无线供电电动车(WPT-EV)在通电导轨上运行时偏移角度会影响电能的传输能力,而传统的电磁引导定位方法只能进行路径选择且精度较低等问题,提出基于三线圈合成算法的电动车无线供电系统定位方法.通过分析WPT-EV在行驶过程中检测线圈拾取电压的变化趋势,利用模糊算法对偏移方向和偏移程度进行分析判断,能够实时地获得WPT-EV的偏移状态,实现利用3个线圈对WPT-EV进行定位.通过实验平台的搭建,验证了该定位方式的可行性.结果表明,该方式为WPT-EV与导轨对中,为达到最强能量提供一条有效途径,具有结构简单、成本低、灵敏度高、可操作性强等特点.

Abstract: When the wireless powered electric vehicles (WPT-EV) operate on the electrified rails, the deviation angle between vehicle and rail can effect the efficiency of electric power transfer, and the traditional method of electromagnetic guided positioning is designed for path tracking with a low positioning accuracy. A novel position detection method for the WPT-EV based on a three-coil synthesis algorithm was proposed to solve these problems, The location of the WPT-EV can be determined based on the variation trend of the voltages induced in three small pick-up coils,  Direction and degree of deviation can be determined based on fuzzy algorithm. The method based on three-coil synthesis algorithm can obtain the deviation position between WPT-EV and rail in real time. Experimental results agreed with the theoretical analysis, which showed the effectiveness of the proposed method. An effective way for helping align WPT-EV and rail was provided to achieve maximum power transfer. The proposed method has the advantage of simple structure, low cost, high sensitivity and strong operability.
出版日期: 2017-05-01
CLC:  TN 962  
基金资助:

国家自然科学基金资助项目(61573074);中央高校基本科研业务费专项基金资助项目(106112015CDJXY170002).

作者简介: 孙跃(1960—),男,教授,博导,主要从事无线电能传输及应用方面等研究. ORCID:0000-0002-6339-3396. E-mail:syue@cqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

孙跃, 贾鑫, 唐春森. 基于三线圈合成算法的WPT-EV拾取定位技术[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.05.019.

SUN Yue, JIA Xin, TANG Chun-sen. Pick-up position detection for WPT-EV based on three-coil synthesis algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.05.019.

参考文献(References):
[1] WANG C S, STIELAUO H, COVIC G. Design considerations for a contactless electric vehicle battery charger [J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1308-1314.
[2] 黄学良,谭林林,陈中,等.无线电能传输技术研究与应用综述[J].电工技术学报,2013,28(10): 1-11.
HUANG Xue-liang, TAN Lin-lin, CHEN Zhong, et al. Review and research progress on wireless power transfer technology [J]. Transaction of China Electrotechnical Society, 2013, 28(10): 1-11.
[3] SALLAN J, VILLA J L, LLOMBORT A, et al. Optimal design of ICPT systems applied to electric vehicle battery charge [J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 2140-2149.
[4] 田勇.基于分段导轨模式的电动车无线供电技术关键问题研究[D].重庆:重庆大学,2012.
TIAN Yong. Research on key Issues of sectional trackbased wireless power supply technology for electric vehicles[D]. Chongqing: Chongqing Universty, 2012.
[5] MADALAWA U K, THRIMAWITHANA D J, NIHAL K. An ICPT-supercapacitor hybrid system for surge-free power transfer [J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3287-3297.-
[6] 宋凯,朱春波,李阳,等.用于电动汽车动态供电的多初级绕组并联无线电能传输技术[J].中国电机工程学报,2015,35(17): 4445-4453.
SONG Kai, ZHU Chun-bo, LI Yang, et al. Wireless power transfer technology for electric vehicle dynamic charging using multiparallel primary coils[J]. Proceedings of the CSEE, 2015, 35(17): 4445-4453.
[7] 杨庆新,章鹏程,祝丽花,等.无线电能传输技术的关键基础与技术瓶颈问题[J].电工技术学报,2015,30(5): 1-8.
YANG Qing-xin, ZHANG Peng-cheng, ZHU Li-hua, et al. Key fundamental Problems and technical bottlenecks of the wireless power transmission technology[J]. Transaction of China Electrotechnical Society, 2015, 30(5): 1-8.
[8] 唐云宇,祝帆,马皓.应用于汽车无线充电的松散耦合变压器优化设计[J].电力电子技术,2015,49(10): 1-3.
TANG Yun-yu, ZHU Fan, MA Hao. Optimization design of loosely coupled transformer for wireless charging in vehicle application[J]. Power Electronics, 2015, 49(10): 1-3.
[9] TSUMURA T, HASHIMOTO M. Positioning and guidance of ground vehicle by use of laser and corner cube [C]∥ IEEE International Conference on Robotics & Automation. San Francisco: IEEE, 1986, 3: 1335-1342.
[10] DIEL DD, DEBITETTO P, TELLER S. Epipolar constraints for visionaided inertial navigation [C]. Wacv/motions Seventh IEEE Workshops on Motion and Video Computing. Breckenridge: IEEE, 2005, 2: 221-228.
[11] GOSHEN-MESKIN D, BAR-ITZHACK I Y. Application to inertial navigation in-flight alignment [J]. IEEE Transactions on Aerospace & Electronic Systems, 2005 1992, 28(4): 1068-1075.
[12] CHERUBINI A, CHAUMETTE F. Visual navigation with obstacle avoidance [C]∥ IEEE/RSJ International Conference on Intelligent Robots & Systems. San Francisco: IEEE, 2011, 30(1): 1593-1598.
[13] HE B, ZHANG H, LI C, et al. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing [J]. Sensors, 2011, 11(11): 10958-80.
[14] DELGADO E, BARREIRO A. Sonar-based robot navigation using nonlinear robust observers [J]. Automatica, 2003, 39(7): 1195-1203.
[15] BOYS J T, COVIC G A, GREEN A W. Stability and control of inductively coupled power transfer systems [J]. IEE Proceedings: Electric Power Applications, 2000, 147(1): 37-43.
[16] VILLA J L, SALLAN J, SANZ OSORIO J F, et al. High-misalignment tolerant compensation topology for ICPT systems [J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 945-951.
[17] KURSCHNER D, RATHGE C, JUMAR U. Design methodology for high efficient inductive power transfer systems with high coil positioning flexibility [J]. IEEE Transactions on Industrial Electronics, 2013, 60(1):372381.
[18] COVIC G A, BOYS J T, KISSIN M L G, et al.A three-phase inductive power transfer system for roadwaypowered vehicles [J]. IEEE Transactions Industrial Electronics, 2007,54(6): 3370-3378.
[19] 秦运友.导轨式ICPT系统拾取定位技术研究与实现[D].重庆:重庆大学,2010.
QIN Yun-you. Study and implement on pickup and location technology of railing ICPT system[D]. Chongqing: Chongqing Universty, 2010.

No related articles found!