Please wait a minute...
浙江大学学报(工学版)
材料与化学工程     
流体辅助共注成型制品层厚的超声无损测量
杨伟民, 赵朋, 匡唐清, 傅建中, 陈子辰
1.浙江大学 浙江省三维打印工艺与装备重点实验室, 浙江 杭州 310027; 
2.义乌工商职业技术学院 机电信息学院,浙江 义乌 322000;
3.华东交通大学 机电工程学院,江西 南昌 330013
Nondestructive measurement for wall thickness of product molded by fluid-assisted co-injection molding using ultrasound
YANG Wei min, ZHAO Peng, KUANG Tang qing, FU Jian zhong, CHEN Zi chen
1. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;
2. School of Electromechanical and Information Engineering, Yiwu Industrial and Commercial College, Yiwu 322000, China;
3. School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(2655 KB)   HTML
摘要:

针对已成型的多层聚合物制品中不同聚合物层厚度,提出基于超声波脉冲反射的测量方法.根据超声波在分界面的反射和透射规律,建立超声波在不同介质分界面的反射波声压幅值与声阻抗的关系.通过测量超声波在各层聚合物分界面的反射回波的声压幅值,计算各层聚合物的声阻抗,再除以该层聚合物的密度计算声速.将声速乘以测量得到的各界面反射回波的时间差,可以计算制品的各层壁厚.研究表明,与扫描电镜的测量方法相比,采用超声波方法测量得到的流体辅助共注成型制品各层壁厚有较好的精度,分层误差不大于4.5%,总厚度误差约为1.6%.

Abstract:

A measuring method based on ultrasonic pulse reflections was proposed for measuring each different material layer’s wall thick of multi-layer polymer coinjection molded product. The relationship between pressure amplitude of reflected wave against the interface between the different plastic layers and their acoustic impedances was established according to the law of reflection and transmission in interface. Acoustic impedance of each plastic layer can be calculated via the measurement of sound pressure amplitude of echo reflected from interfaces between two adjacent plastic layers. Then ultrasound velocity in each plastic is equal to acoustic impedance dividing their density. Wall thickness of each layer is equal to the product of ultrasound velocity and the propagation time of ultrasound in each layer, which can be measured from the reflected wave. Results showed that the ultrasonic measuring method had good accuracy compared with the method using scanning electron microscope. Errors of each layer were less than 4.5%, and error of total thickness was approximately equal to 1.6%.

出版日期: 2017-01-01
CLC:  TQ 320  
基金资助:

国家自然科学基金资助项目(51475420);浙江省自然科学基金资助项目(LY14E050017);浙江省教育厅2015年度高校国内访问学者专业发展资助项目(145);中央高校基本科研业务费专项资金资助项目(2015QNA4001).

通讯作者: 赵朋,男,副教授.ORCID:0000-0002-3815-1248.     E-mail: pengzhao@zju.edu.cn
作者简介: 杨伟民(1980—),男,副教授,从事聚合物成型及微观形态表征与调控研究. ORCID:0000-0002-4621-9724. E-mail: yangweimin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨伟民, 赵朋, 匡唐清, 傅建中, 陈子辰. 流体辅助共注成型制品层厚的超声无损测量[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.01.024.

YANG Wei min, ZHAO Peng, KUANG Tang qing, FU Jian zhong, CHEN Zi chen. Nondestructive measurement for wall thickness of product molded by fluid-assisted co-injection molding using ultrasound. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.01.024.

[1] 匡唐清,柳和生,周国发,等.气体辅助共注成型的发展现状[J]. 中国塑料, 2003(09): 36-40.
KUANG Tangqing, LIU Hesheng, ZHOU Guofa, et al. Present situation of gasassisted coinjection molding [J]. China Plastics, 2003(09): 36-40.
[2] 周国发,孙懋,柳和生,等. 顺序共注成型的实验研究[J]. 中国塑料, 2003(04): 55-59.
ZHOU Guofa, SUN Mao, LIU Hesheng, et al. Experimental study of sequential coinjection molding [J]. China Plastics, 2003(04): 55-59.
[3] MULVANEYJOHNSON L, CHENG C C, ONO Y, et al. Real time diagnostics of gas/water assisted injection moulding using integrated ultrasonic sensors [J]. Plastics, Rubber and Composites, 2013, 36(3): 111-121.
[4] CHENG C, ONO Y, JEN C. Realtime diagnosis of coinjection molding using ultrasound [J]. Polymer Engineering and Science, 2007, 47(9): 1491-1500.
[5] 章凯,柳和生,匡唐清,等.注水延迟时间对水辅共注成型充填的影响[J]. 高分子材料科学与工程,2013(06): 173-177.
ZHANG Kai, LIU Hesheng, KUANG Tangqing, et al. Influence of water injection delay time on waterassisted coinjection molding filling process [J]. Polymer Materials Science and Engineering, 2013(06): 173-177.
[6] ONO Y, JEN C K, CHENG C C, et al. Realtime monitoring of injection molding for microfluidic devicesusing ultrasound [J]. Polymer Engineering and Science, 2005, 45(4): 606-612.
[7] ONO Y, WHITESIDE B R, BROWN E C, et al. Realtime process monitoring of micromoulding using integrated ultrasonic sensors [J]. Transactions of the Institute of Measurement and Control, 2007, 29(5):383-401.
[8] HSU D K, HUGHES M S. Simultaneous ultrasonic velocity and sample thickness measurement and application in composites [J]. Journal of the Acoustical Society ofAmerica, 1992, 92(2): 669-675.
[9] WOOH S C, WEI C. A highfidelity ultrasonic pulseecho scheme for detecting delaminations in composite laminates [J]. Composites Part B Engineering, 1999,30(5): 433-441.
[10] RAIUTIS R, KAYS R, MAEIKA L. Application of the ultrasonic pulseecho technique for quality control of the multilayered plastic materials [J]. NDT and E International, 2008, 41(4): 300-311.
[11] RAIUTIS R, KAYS R, MAEIKA L. Application of the ultrasonic characterization methods for highly attenuating plastic materials [J]. NDT and E International, 2007, 40(4): 324-332.
[12] HGGLUND F. Tools for ultrasonic characterization of layered media [D]. Lule : Lule University of Technology, 2007.
[13] LIONETTO F, MAFFEZZOLI A. Polymer characterization by ultrasonic wave propagation [J]. Advances in Polymer Technology, 2008, 27(2): 63-73.
[14] 丁辉.计算超声学:声场分析及应用[M]. 北京:科学出版社, 2010: 10-13.
[15] ZHAO P, WANG S, YING J, et al. Nondestructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process [J]. Polymer Testing, 2013, 32(8): 1436-1444.
[16] ZHAO P, PENG Y, YANG W, et al. Crystallization measurements via ultrasonic velocity: study of poly(lactic acid) parts [J]. Journal of Polymer Science Part BPolymer Physics, 2015, 53(10): 700-708.

[1] 张剑锋,赵朋,周宏伟,傅建中,陈子辰. 注射成形中聚合物熔体黏度的在线测量装置[J]. 浙江大学学报(工学版), 2020, 54(8): 1474-1480.
[2] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[3] 赵朋, 傅建中, 李阳, 崔树标. 基于代理模型的注射参数迭代优化方法[J]. J4, 2011, 45(2): 197-200.