Please wait a minute...
浙江大学学报(工学版)
地球科学     
采用二流式算法的GOCI\AOT反演方法及其应用
姚玲玲, 张霄宇, 江彬彬
浙江大学 地球科学学院,空气污染与健康研究中心,浙江 杭州 310027
Retrieval method of GOCI\AOT using two stream approximate algorithm and its application
YAO Ling ling, ZHANG Xiao yu, JIANG Bin bin
Department of Earth Science, Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2897 KB)   HTML
摘要:

针对静止海洋水色传感器(GOCI)2.1 μm短波红外通道缺失和高太阳天顶角的特点,采用二流式算法,并考虑气溶胶的折射率、地球曲率等因素,重新计算地表反射率、表观反射率以及反演GOCI气溶胶光学厚度(AOT).结果表明:参数重新计算后的GOCI\AOT反演精度明显增高|根据目前广泛使用的实测AOT(440 nm)>1.00霾判定阈值,采用线性内插方法,建议GOCI\AOT以AOT(555 nm)>0.81作为霾判定阈值|中分辨率成像光谱仪(MODIS)是业务化的极轨卫星,GOCI\AOT整体略大于MODIS\AOT,拟合精度R2=0.82.以2015年11月27日至同年12月2日华北地区发生的霾事件为例,结合具有大范围观测能力的MODIS卫星,多源遥感监测方法有效地反映了该霾事件的动态发展过程.

Abstract:

Aerosol optical thickness (AOT) of geostationary ocean color imager (GOCI) was retrieved based on the twostream approximate algorithm considering aerosol refractive index and earth curvature and other causations, aiming at the lackage of 2.1 μm short wave infrared band and the high solar zenith angle of GOCI. As specified, the retrieval precision of GOCI\AOT gets improved after parameters recalculation. According to the widely used groundbase haze threshold of AOT (440 nm) > 1.00, GOCI\AOT (555 nm) >0.81 is proposed as the haze determination threshold based on the linear interpolation method. Moderate resolution imaging spectroradiometer (MODIS) is an operational polar orbiting satellite, GOCI\AOT is slightly higher than MODIS\AOT with R2 of 0.82. The haze event from November 27 to December 2, 2015 was selected as one case and MODIS satellite was combined to realize realtime dynamic monitoring of haze events over North China, which indicates that the multi satellites remote sensing monitoring method can reflect the dynamic process of haze event effectively.

出版日期: 2016-12-08
:  P 237  
基金资助:

国家重点研发计划资助项目(2016YFC1400901);浙江省教育厅资助项目(Y201430393);浙江省环保科技计划资助项目(2013A021);浙江大学空气污染与健康研究中心资助项目.

通讯作者: 张霄宇,女,副教授. ORCID: 0000-0002-7270-7270.     E-mail: zhang_xiaoyu@zju.edu.cn
作者简介: 姚玲玲(1990—),女,硕士,从事大气环境遥感研究. ORCID: 0000-0002-7558-0754. E-mail: lynnzju@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姚玲玲, 张霄宇, 江彬彬. 采用二流式算法的GOCI\AOT反演方法及其应用[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.12.024.

YAO Ling ling, ZHANG Xiao yu, JIANG Bin bin. Retrieval method of GOCI\AOT using two stream approximate algorithm and its application. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.12.024.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.12.024        http://www.zjujournals.com/eng/CN/Y2016/V50/I12/2424

[1] LEE J, KIM J, SONG C H, et al. Algorithm for retrieval of aerosol optical properties over the ocean from the geostationary ocean color imager [J]. Remote Sensing of Environment, 2010, 114(5): 1077-1088.
[2] RYU J H, HAB H J, CHO S, et al. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS) [J]. Ocean Science Journal, 2012, 47(3): 223-233.
[3] ZHANG Y, LI Z; ZHANG Y, et al. High temporal resolution aerosol retrieval using geostationary ocean color Imager: application and initial validation [J]. Journal of Applied Remote Sensing, 2014, 8(7):4480-4494.
[4] XUE Y, CRACKNELL A P. Operational biangle approach to retrieve the earth surface albedo from AVHRR data in the visible band [J]. International Journal of Remote Sensing, 1995, 16(3): 417-429.
[5] WANG Y, XUE Y, LI Y, et al. Prior knowledgesupported aerosol optical depth retrieval over land surfaces at 500 m spatial resolution with MODIS data [J]. International Journal of Remote Sensing, 2012, 33(3):674-691.
[6] LI Y, XUE Y, HE X, et al. Highresolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ1 CCD and MODIS data [J]. Atmospheric Environment, 2012, 46(1): 173-180.
[7] LI Y, XUE Y, LEEUW G D, et al. Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data [J]. Remote Sensing of Environment, 2013, 133: 120.
[8] KONDRAT’EV K Y. Radiation in the atmosphere [M]. New York: Academic Press, 1969: 732-739.
[9] ROSENFELD D, LIU G, YU X, et al., High resolution (375 m) cloud microstructure as seen from the NPP/VIIRS satellite imager [J]. Atmospheric Chemistry and Physics Discussions, 2013, 13(11): 2984529894.
[10] MODULE E A C. QUAC and FLAASH user’s guide [M]. New York: ITT Visual Information Solutions Publishers, 2009: 513.
[11] LI Y, XUE Y, HE X, et al. Highresolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ1 CCD and MODIS data [J]. Atmospheric Environment, 2012, 46(1): 173180.
[12] 刘良明.卫星海洋遥感导论[M].武汉:武汉大学出版社, 2005: 198-290.
[13] LEE K H, RYU J H, AHN J H, et al. First retrieval of data regarding spatial distribution of Asian dust aerosol from the geostationary ocean color imager [J]. Ocean Science Journal, 2012, 47(4): 465-472.
[14] MOHANAN E C, MUIRCHEARTAIGH I O. Optimal powerlaw description of oceanic whitecap coverage dependence on wind speed [J]. Journal of Physical Oceanography, 1980, 10: 2094-2099.
[15] MOREL A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) [J]. Journal of Geophysical Research: Oceans (19782012), 1988, 93(C9): 10749-10768.
[16] 姜秋富,卫星多光谱遥感数据溢油检测方法研究[D].山东:中国海洋大学,2011: 149.
JIANG Qiufu. The study of oil spill decetion using satellite multi—spectral data [D]. Shandong: Ocean University of China, 2011: 149.
[17] ECK T F, HOLBEN B N, REID J S, et al. Fog and cloud induced aerosol modification observed by the aerosol robotic network (AERONET) [J]. Journal of Geophysical Research Atmospheres, 2012, 117(D7): 107116.
[18] SMIRNOV A, HOLBEN B N, ECK T F, et al. Cloudscreening and quality control algorithms for the AERONET database [J]. Remote Sensing of Environment, 2000, 73(3): 337-349.
[19] 周春艳,柳钦火,唐勇,等.MODIS气溶胶C004、C005产品的对比分析及其在中国北方地区的适用性评价[J]. 遥感学报, 2009, 13(5): 854-872.
ZHOU Chunyan, LIU Qinhuo, TANG Yong, et al. Comparison between MODIS aerosol product C004 and C005 and evaluation of their applicability in the north of China [J]. Journal of Remote Sensing, 2009, 13(5): 854-872.
[20] MENG F, CAO C, SHAO X. Spatiotemporal variability of SuomiNPP VIIRSderived aerosol optical thickness over China in 2013 [J]. Remote Sensing of Environment, 2015, 163: 61-69.
[21] HE Q, LI C, TANG X, et al. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China [J]. Remote Sensing of Environment, 2010, 114(8): 1649-1661.
[22] GROSSO N, PARONIS D. Comparison of contrast reduction based MODIS AOT estimates with AERONET measurements [J]. Atmospheric Research, 2012,116(8): 3345.
[23] SCHUTGENS N A J, NAKATA M, NAKAJIMA T. Validation and empirical correction of MODIS AOT and AE over ocean [J]. Atmospheric Measurement Techniques Discussions, 2013, 6(2): 3765-3818.
[24] LI Z Q, GU X, WANG L, et al. Aerosol physical and chemical properties retrieved from groundbased remote sensing measurements during heavy haze days in Beijing winter [J]. Atmospheric Chemistry and Physics, 2013, 13(20): 10171-10183.
[25] 颜鹏,刘桂清,周秀骥,等.上甸子秋冬季雾霾期间气溶胶光学特性[J].应用气象学报,2010, 21(3): 257-265.
YAN Peng, LIU Guiqing, ZHOU Xiuji, et, al. Apparatus of aerosol optical properties during autumn and winter haze over Shangdianzi area [J]. Journal of Applied Meteorological Science, 2010, 21(3): 257-265.
[26] 中国气象局.中国气象地理区划手册[M].北京:气象出版社,2006: 15.

[1] 杜泳,张霄宇,黄大松,江彬彬,陈建裕,邓涵,姚玲玲,杨顶田. 以水体为观测目标的Worldview-2融合方法评价[J]. 浙江大学学报(工学版), 2015, 49(5): 993-1000.