Please wait a minute...
浙江大学学报(工学版)
水利工程     
河口冲淤对围垦的响应
郭聪,孙志林,郑浩磊,潘桂娥
1. 浙江大学 港口海岸与近海工程研究所,浙江 杭州 310058;
2. 浙江省水利发展规划研究中心,浙江 杭州 310012;
3. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122
Response of estuarine erosion and deposition to reclamation in estuary
GUO Cong, SUN Zhi lin, ZHENG Hao lei, PAN Gui e
1. Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China;
2. Zhejiang Development and Planning Research Centre of Water Conservancy, Hangzhou 310012, China;
3. Power China Huadong Engineering Corpration, Hangzhou 311122,China
 全文: PDF(2068 KB)   HTML
摘要:

为了研究椒江河口地形对毗邻海域连续多段大面积滩涂围垦(即集群围垦)的响应,利用二维潮流非均匀沙数学模型,预测椒江河口现状岸线下及规划围垦工程后的床面冲淤.结果显示:现状岸线下未来河口河道大部分区域发生冲刷,口外拦门沙有少量淤积|规划围垦工程后河口河道及口外拦门沙淤积,河口延伸段冲刷|与各围垦工程单独作用的叠加效果相比,集群围垦联合作用下的冲淤幅度更大,即存在非线性效应,应在围垦规划时予以重视|河口水动力随毗邻海域围垦面积的增大而减弱,水流挟沙能力随之下降,因而河口河道及口外拦门沙的淤积厚度随围垦面积的增大而增大.

Abstract:

Large scale and multi-stage reclamation (i.e.cluster reclamation) of tidal flat was planned and performed near the Jiaojiang Estuary. A series of numerical simulations were carried out by using a 2D mathematical model for tidal flow and nonuniform sediment transport in order to investigate the response of seabed erosion and deposition to cluster reclamation in Jiaojiang Estuary. According to the results, erosion occurred in most part of estuarine channel while a small amount of deposition occurred in mouth-bar region in the situation of present coastline. When the planned reclamation is imposed, a serious deposition  occurs in estuarine channel and mouth-bar region while the new extend part of estuary caused by reclamation is eroded. Compared with the combined effect of each single reclamation on erosion and deposition, the effect of the whole cluster reclamation is larger, that is to say, there is a nonlinear effect. Special attention for the nonlinear effect should be paid to the effect of cluster reclamation on seabed evolution.With the increase in the area of reclamation, the hydrodynamics of estuarine channel and mouth-bar region weakens and therefore sediment transport capacity decreases, then the thickness of deposition increases in these areas.

出版日期: 2016-09-22
:  TV 14  
基金资助:

教育部博士点基金资助项目(2120101110108); 浙江省水利厅重点资助项目(RB1212).

通讯作者: 孙志林,男,教授,博导.ORCID: 0000-0002-6446-3472.     E-mail: oceansun@zju.edu.cn
作者简介: 郭聪(1987-),男,博士生,从事水沙动力与河口海岸数值模拟研究.ORCID: 0000-0001-8309-7941. E-mail: guocongliang@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郭聪,孙志林,郑浩磊,潘桂娥. 河口冲淤对围垦的响应[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.09.21.

GUO Cong, SUN Zhi lin, ZHENG Hao lei, PAN Gui e. Response of estuarine erosion and deposition to reclamation in estuary. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.09.21.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.09.21        http://www.zjujournals.com/eng/CN/Y2016/V50/I9/1791

[1] GLASER R, HABERZETTL P, WALSH R P D. Land reclamation in Singapore, Hong Kong and Macau [J]. Geojournal, 1991, 24(4): 365-373.
[2] CHEN J Y, CHEN S L. Estuarine and coastal challenges in China [J]. Chinese Journal of Oceanology and Limnology, 2002, 20(2): 174-181.
[3] BI X L, LIU F Q, PAN X B. Coastal projects in China: from reclamation to restoration [J]. Environmental Science and Technology, 2012, 46(9): 4691-4692.
[4] VAN DER WAL D, PYE K, NEAL A. Longterm morphological change in the Ribble Estuary, northwest England [J]. Marine Geology, 2002, 189(3): 249-266.
[5] MO W Y, WEI X, QIU L G. A longterm numerical model of morphodynamic evolution and its application to the Modaomen Estuary [J]. China Ocean Engineering, 2012, 26(1): 123-138.
[6] WANG Y P, GAO S, JIA J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China [J]. Marine Geology, 2012, 291294(4):147-161.
[7] HE Y F, CHENG H Q, CHEN J Y. Morphological evolution of mouth bars on the Yangtze estuarine waterways in the last 100 years [J]. Journal of Geographical Sciences, 2013, 23(2): 219-230.
[8] LI M G. The effect of reclamation in areas between islands in a complex tidal estuary on the hydrodynamic sediment environment [J]. Journal of Hydrodynamics, Ser. B, 2010, 22(3): 338-350.
[9] PENG B R, LIN C C, JIN D, et al. Modeling the total allowable area for coastal reclamation: a case study of Xiamen, China [J]. Ocean and Coastal Management, 2013, 76(3): 3844.
[10] 张琴, 陶建峰, 张长宽,等. 台州湾浅海滩涂大规模围垦下水动力变化分析[J]. 海洋通报, 2015, 34(4): 392-398.
ZHANG Qin, TAO Jianfeng, ZHANG Changkuan, et al. Effect of the largescale reclamation of tidal flats on the hydrodynamic characteristics in the Taizhou Bay [J]. Marine Science Bulletin, 2015, 34(4): 392-398.
[11] WANG C Y, ZHOU B, HUANG B. A continuing 30year decline in water quality of Jiaojiang Estuary, China [J]. Water Science and engineering, 2015. 8(1): 20-29.
[12] SUN Z L, NIE H, HUANG S J, et al. Effects of Sea Level Rise on Coastal Reclamation Projects in Jiaojiang Estuary, China [J]. Journal of Coastal Research, 2014, SI(68): 74-79.
[13] 李伯根, 王才洪, 周鸿权, 等. 近70年来椒江河口河床冲淤调整机理[J]. 海洋学报, 2009, 31(5): 89-100.
LI Bogen, WANG Caihong, ZHOU Hongquan, et al. Adjustment mechanism on the erosion and accretion of riverbed in the Jiaojiang Estuary in Zhejiang province, China [J]. Acta Oceanologica Sinica, 2009, 31(5): 89-100.
[14] GUAN W B, WOLANSKI E, DONG L X. Cohesive sediment transport in the Jiaojiang River Estuary, China [J]. Estuarine Coastal and Shelf Science, 1998, 46(6):861871.
[15] LI B G, EISMA D, XIE Q C, et al. Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China [J]. Journal of Sea Research, 1999, 42(2): 105-116.
[16] 孙平锋. 椒江口二维潮流泥沙数学模型研究及其应用[D]. 杭州:浙江大学, 2006: 13-37.
SUN Pingfeng. Study on 2D Mathematical model of tidal flow and sediment in Jiaojiang estuary [D]. Hangzhou: Zhejiang University, 2006: 13-37.
[17] 孙志林, 倪晓静, 许丹, 等. 河口泥沙数学模型的若干问题[J]. 浙江大学学报:工学版, 2015, 49(2):232-237.
SUN Zhilin, NI Xiaojing, XU Dan, et al. Some problems on mathematical model of sediment transport in estuary [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(2): 232-237.
[18] 孙志林, 杨恩尚, 曾田力, 等. 考虑侧向出沙的河网非均匀沙输移[J]. 水利学报, 2016, 47(1): 7276,84.
SUN Zhilin, YANG Enshang, ZENG Tianli, et al. Nonuniform sediment transport with lateral output in river networks [J]. Journal of Hydraulic Engineering, 2016, 47(1): 7276,84.
[19] 孙志林,夏珊珊,朱晓,等. 河口时变水流挟沙能力公式[J]. 清华大学学报:自然科学版, 2010, 50(3):383-386.
SUN Zhilin, XIA Shanshan, ZHU Xiao, et al. Formula of timedependent sediment transport capacity in estuaries [J]. Journal of Tsinghua University: Science and Technology, 2010, 50(3): 383-386.
[20] 孙志林. 颗粒静水沉降的统一规律[J]. 浙江大学学报:理学版, 1990, 17(2): 246-255.
SUN Zhilin. The general law for the fall velocity of particle in quiescent water [J]. Journal of Zhejiang University: Science Edition, 1990, 17(2): 246-255.
[21] WU W M, WANG S S Y. Depthaveraged 2D calculation of tidal flow, salinity and cohesive sediment transport in estuaries [J]. International Journal of Sediment Research, 2004, 19(3): 172-190.

[1] 匡翠萍, 宋竑霖, 顾杰, 马震. 黄骅港风生流及紊动的三维特性[J]. 浙江大学学报(工学版), 2017, 51(1): 38-45.
[2] 张晓雷, 夏军强, 邓珊珊, 王增辉. 断面间距对黄河下游高含沙洪水模拟结果影响[J]. 浙江大学学报(工学版), 2016, 50(4): 735-743.
[3] 张文君,孙红月,潘攀,魏振磊. 泥石流虹吸排水分流池自清淤能力分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2159-2164.
[4] 胡德超, 池龙哲, 杨琼, 王敏. 水库坝区冲刷漏斗的形成机理[J]. 浙江大学学报(工学版), 2015, 49(2): 257-264.
[5] 夏军强, 宗全利, 邓珊珊, 许全喜, 张翼. 三峡工程运用后荆江河段平滩河槽形态调整特点[J]. 浙江大学学报(工学版), 2015, 49(2): 238-245.
[6] 范念念, 吴保生. 基于随机-动力学模型的非均匀推移质扩散[J]. 浙江大学学报(工学版), 2015, 49(2): 246-250.
[7] 孙志林, 倪晓静, 许丹, 聂会. 河口泥沙数学模型的若干问题[J]. 浙江大学学报(工学版), 2015, 49(2): 232-237.
[8] 周建银, 邵学军, 江磊, 假冬冬. 水库细颗粒淤积物的重力驱动流动[J]. 浙江大学学报(工学版), 2014, 48(12): 2254-2258.
[9] 孙志林, 杨仲韬, 高运, 许丹, 胡世祥. 长江分汊河口水力几何形态[J]. 浙江大学学报(工学版), 2014, 48(12): 2266-2270.
[10] 陈一帆, 程伟平, 蒋建群. 一种稳健的河流糙率反演方法[J]. J4, 2013, 47(8): 1361-1365.
[11] 张世瑕,王紫雯,吴赛男. 沿海围垦对防灾功能影响的景观生态机理研究
——以钱塘江河口海湾为例
[J]. J4, 2012, 46(7): 1281-1288.
[12] 李佳,姚炎明,孙志林,黄赛花,杨晓东. 大型海洋倾倒区悬浮物迁移扩散的数值模拟[J]. J4, 2011, 45(7): 1319-1328.
[13] 许丹, 孙志林. 钱塘江河口突发污染物扩散数值模拟分析[J]. J4, 2010, 44(9): 1767-1772.