Please wait a minute...
浙江大学学报(工学版)
化学工程     
非均相催化臭氧氧化深度处理炼油废水
邓凤霞1,邱珊1,岳秀丽2,徐善文2,陈聪1,丁晓1,马放1,2
1.哈尔滨工业大学 市政环境工程学院,黑龙江 哈尔滨 150090;2.哈尔滨工业大学 城市水资源与水环境国家重点实验室,黑龙江 哈尔滨 150090
Advanced treatment of refinery wastewater by heterogeneous catalytic ozonation oxidation
DENG Feng-xia1, QIU Shan1,2, YUE Xiu-li1, XU Shan-wen2, CHEN Cong1,DING Xiao1, MA Fang1,2
1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; 2.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
 全文: PDF(1632 KB)   HTML
摘要:

采用非均相催化臭氧氧化工艺(自主研制的铜锰氧化物催化剂)处理炼油废水,探索该工艺深度处理炼油废水的不同影响因素和机制,获得最适宜工艺参数,使处理出水满足炼油企业的回用水标准.考察反应前后催化剂的稳定性.废水取自广东某炼油企业.结果表明:最优值为原始pH=68,臭氧投加质量浓度为50 mg/L,催化剂质量浓度为3.0 g/L.在17 ℃室温条件下反应15 min,出水化学需氧量(COD)满足该炼油企业的回用水标准:COD<50 mg/L.氨氮有一定的去除.使用前后,催化剂的抗压性能和活性组分未发生明显变化,催化效果稳定.GC-MS分析结果表明:非均相催化氧化工艺可以减少炼油废水中的大分子有机物质,尤其是含氮的杂环物质,能将高沸点大分子有机物降解为低沸点小分子有机物质,提高炼油废水的可生化性.

Abstract:

Heterogeneous catalytic ozonation oxidation was applied for treatment of refinery wastewater wastewater with self-developed copper-manganese oxides (Cu-Mn-O) catalysts. Different influencing factors and mechanism of the advanced treatment were investigated to acquire the optimum technological parameters, so that the treated effluent could meet the refinerys standard for reuse water.Moreover, the stability of the catalyst before and after the reaction was studied. The wastewater was obtained from a refinery located in Guangdong province.Results showed that the optimum values were ozone dose 500 mg/L, catalyst dose 30 g/L, initial pH = 68. and at under this condition the effluents chemical oxygen demand (COD) could meet the refinerys recycling wastewater standard (COD < 50 mg/L) after reaction for 15 min at the room temperature (17 ℃). Meanwhile, ammonia nitrogen could be removed to some extent.There was no obvious change of the compressive performance and the active components of the catalysts before and after reaction. Therefore, the catalytic effect was stable. From the GC-MS analysis, heterogeneous catalytic ozonation oxidation can reduce the macromolecular organic matter in wastewater, especially the organic nitrogen compounds. It can also degrade high boiling organic molecules into low boiling small ones, improving the wastewater’s biodegradability.

出版日期: 2015-08-28
:  X 703.1  
基金资助:

国家重大专项资助项目(2012ZX07201-002)

通讯作者: 马放,男,教授     E-mail: mafang@hit.edu.cn
作者简介: 邓凤霞(1989-),女,硕士生.从事非均相催化臭氧氧化研究.E-mail: dengfx_hit@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邓凤霞,邱珊,岳秀丽,徐善文,陈聪,丁晓,马放. 非均相催化臭氧氧化深度处理炼油废水[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.01.022.

DENG Feng-xia, QIU Shan, YUE Xiu-li, XU Shan-wen, CHEN Cong. Advanced treatment of refinery wastewater by heterogeneous catalytic ozonation oxidation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.01.022.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.01.022        http://www.zjujournals.com/eng/CN/Y2015/V49/I3/555

[1] 张抗,卢雪梅.委内瑞拉石油工业形势及对我国的影响[J].中外能源,2011,16(10):18-36.
ZHANG Kang, LU Xue-mei. The influence of venezuelas oil industry and its situation[J]. Sino-Global Energy, 2011, 16(10): 18-36.
[2] 孙武,王泉,王能才,等.国产PVDF中空纤维膜在炼油废水深度处理回用中的应用[J].石油炼制与化工,2013,44(03):79-83.
SUN Wu, WANG Quan, WANG Neng-cai, et al. The application of homemade PVDF in the advanced treatmentof oil refining[J].Petroleum Processing and Petrochemicals,2013,44(03):79-82.
[3] 刘春平.石油化工企业的节水减排[J].化工环保,2006,26(01):74-77.
LIU Chun-ping. Water saving and wastewater reducing in petrochemical industry [J]. Environmental Protection of Chemical Industry, 2006, 26(01):74-77.
[4] ZHAO L, MA W, MA J, et al. Characteristic mechanism of ceramic honeycomb catalytic ozonation enhanced by ultrasound with triple frequencies for the degradation of nitrobenzene in aqueous solution[J].Ultrasonics Sonochemistry, 2014,21(1): 104-112.
[5] CAO H B ,XING L L, WU G G. Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid[J]. Applied Catalysis B: Environmental, 2014, 146:169-176.
[6] NIE Y L, HU C, LI N N. Inhibition of bromate formation by surface reduction in catalytic ozonation of organic pollutants over β-FeOOH/Al2O3[J]. Applied Catalysis B: Environmental, 2014,147:287-292.
[7] 贾瑞平,盛敏奇,张辉,等.臭氧分析方法的研究和进展[J].工业水处理,2008,28(02):15.
JIA Rui-ping, SHENG Min-qi, ZHANG Hui, et al. Research and development of the analytical methods of ozone[J]. Industrial Water Treatment,2008,28(02):15.
[8] 孙志忠.臭氧/多相催化氧化去除水中有机污染物效能与机理[D].哈尔滨:哈尔滨工业大学,2006.
SUN Zhi-zhong. Efficiency and mechanism of ozone/heterogeneous catalytic oxidation for the degradation of organic pollutants in water[D]. Harbin:Harbin Institute of Technology, 2006.
[9] 陈峰,唐访良,张明,等.废水中松节油类化合物的分析方法[J].中国给水排水,2013,29(10):86-90.
CHEN Feng, TANG Fang-liang, ZHANG Ming, et al. Determination of Turpentine-like Compounds in Wastewater[J]. China Water and Wastewater, 2013,29(10):86-90.
[10] 丘永梁,陈洪龄,汪效祖,等.水热法制备纳米TiO2及其等电点的研究[J].高校化学工程学报,2005,19(01):129-133.
QIU Yong-liang, CHEN Hong-ling, WANG Xiao-zu, et  al.Preparation of nanometer titanium dioxide powders by hydrothermal method and their isoelectric points [J]. Journal of ChemicalEngineering of Chinese Universities,2005,19(01):129-133.
[11] W.斯塔姆编,汤鸿霄译.水化学[M].北京:科学出版社,1987:460-465.
[12] 陈忠林,齐飞,徐冰冰,等. γ-Al2O3催化臭氧氧化水中嗅味物质机理探讨[J].环境科学,2007,28(3):563-568.
CHEN Zhong-lin, QI Fei, XU Bing-bing, et al.Mechanism discussion ofγ-alumina catalyzed ozonation for 2-Methylisoborneol removal[J]. Enviromental Science,2007,28(3):563-568.
[13] NAWROCKI J. Catalytic ozonation in water: controversies and questions[J].Applied CatalysisB:Environmental,2013,142-143:465-471.
[14] IKHLAQ A, BROWN D R,KASPRZYK H B. Mechanisms of catalytic ozonation on alumina and zeolites in water: formation of hydroxyl radicals[J].Applied Catalysis B: Environmental,2012,123-124:94-106.
[15] CARLOS A, GUZMAN P, JARED R. Kinetics of catalytic ozonation of atrazine in the presence of activated carbon [J].Separation and Purification Technology,2011,79(1):8-14.
[16] LIU X Y, ZHOU Z M, JING G H.Catalytic ozonation of acid red B in aqueous solution over a Fe–Cu–Ocatalyst [J].Separation and Purification Technology,2013,15(1):129-135.
[17] ZHANG T, CROUE J P. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal–carboxylate complex [J].Applied Catalysis B: Environmental,2013,144(1):831-839.
[18] PIRGALIOGLU S, OZBELGE T A.Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor [J].Bioresource Technology, 2008, 100 (3) : 1428-1434.
[19] AMUTHA R, SILLANPAA M, LEE G J. Catalytic ozonation of 2-ethoxy ethyl acetate using mesoporous nickel oxalates [J].Catalysis Communications,2013,43:88-92.
[20] 代欣欣,李汴生.水中臭氧溶解特性的研究[J].食品科技,2008,08:84-87.
DAI Xin-xin,LI Bian-sheng. Studies on solubility characteristics of ozone in water[J].Food Science and Technology,2008,08:84-87.
[21] 孟庆锐,安路阳,李超,等.O3催化氧化深度处理兰炭废水的试验研究[J].环境科学与技术,2013,02:133-136.
MENG Qing-rui, AN Lu-yang, LI Chao, et al. Experimental study on advanced treatment of semi-coking [J]. Environmental Science & Technology,2013,02:133-136.
[22] 石枫华,马军.臭氧化和臭氧催化氧化工艺的除污效能[J].中国给水排水,2004,20(03):14.
SHI Feng-hua, MA Jun.Organics removal efficiency of ozonation and ozone catalyticoxidation process[J]. China Water and Wastewater, 2004,20(03):14.

[1] 吴琼, 华涛, 周启星, 张曙光. 基于生态安全的混合化工废水处理工艺[J]. J4, 2011, 45(8): 1469-1474.