Please wait a minute...
浙江大学学报(工学版)
土木工程     
生物作用下排水管道沉积物的冲蚀特性
邵卫云, 马妍, 周永潮, 杜旭, 关垚
浙江大学 建筑工程学院,浙江 杭州 310058
Erosion characteristics of sewer sediment with biological actions
SHAO Wei-yun, MA Yan, ZHOU Yong-chao, DU Xu, GUAN Yao
College of Civil Engineering and Architecture. Zhejiang University, Hangzhou 310058, China
 全文: PDF(1001 KB)   HTML
摘要:

 通过在实验室内控制不同的温度、溶解氧环境以及培养时间,探究排水管道内高有机物含量的沉积物在生物作用下的冲蚀特性和规律.结果表明: 生物作用对高有机性沉积物的冲蚀特性的影响可表现为两方面:一是影响沉积物堆积密度使其内部结构松散从而削弱其抗冲蚀能力;二是在沉积物表面形成生物膜层从而使其抗冲蚀能力得到增强.在常温(25℃)好氧工况下,由于生物作用较为活跃,沉积物不同深度处的堆积密度随培养时间的增加有不同程度的减小,而在低温(5℃)和厌氧条件下沉积物密度则随培养时间的增加而增大.此外,相对于5℃和厌氧工况,25℃好氧条件更有利于沉积物表面生物膜层的发展,从而提高沉积物的抗冲蚀能力.

Abstract:

The erosion behavior of organic-riched sewer sediment was investigated in laboratory experiments by controlling series conditions of different temperature, dissolved oxygen (DO) and incubation time. Results show that biological activities can affect sewer sediment erosion behavior in two ways. Anti-erosion ability is weaken due to the decrease of bulk density, whereas, biofilm which was developed during biological process can enhance the sediment anti-erosion ability. During the tests with high DO and normal temperature (25 ℃), the bulk density at various depths decreased to various degrees due to obvious biological effects. On the contrary, an increase of the bulk density was observed during the experiment under the condition of anaerobic and low temperature(5 ℃). Besides, compared with  5 ℃ and anaerobic conditions, aerobic condition with 25 ℃ promoted the development of biofilm on the sediment surface, which can enhance significantly the anti-erosion ability of sediment.

出版日期: 2015-04-01
:  TU 992.3  
基金资助:

国家水体污染控制与治理科技重大专项资助项目(2011ZX07301-004-03-02);教育部高等学校博士学科点专项科研基金资助项目(20110101120029);浙江省饮用水安全保障与城市水环境治理重点科技创新团队资助项目(2010R50037).

通讯作者: 周永潮,男,讲师,博士.     E-mail: zhoutang@zju.edu.cn
作者简介: 邵卫云(1970—),女,副教授,主要从事水动力学、城市排水与水环境方向研究.E-mail: shaowy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邵卫云, 马妍, 周永潮, 杜旭, 关垚. 生物作用下排水管道沉积物的冲蚀特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.06.015.

SHAO Wei-yun, MA Yan, ZHOU Yong-chao, DU Xu, GUAN Yao. Erosion characteristics of sewer sediment with biological actions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.06.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.06.015        http://www.zjujournals.com/eng/CN/Y2014/V48/I6/1075

[1] 钱宁,万兆惠.泥沙运动力学[M].北京:中国水利水电出版社,1998: 240-264.
[2] 周志德. 泥沙颗粒扬动条件[J]. 水利学报, 1981(6): 51-56.
ZHOU Zhi-de. Critical condition for inception sediment[J]. Journal of Hydraulic Engineering,1981(6): 51-56.
[3] GUO Q, FAN C Y, RAGHAVEN R, et al. Gate and vacuum flushing of sewer sediment: Laboratory testing[J]. Journal of Hydraulic Engineering, 2004, 130(5): 463-466.
[4] CAMPISANO A, CREACO E, MODICA C. Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[J]. Journal of Hydrology, 2004, 299(3): 324-334.
[5] 吕平,谈广鸣,王军.黏性泥沙淤后起动流速试验研究[J].中国农村水利水电, 2008(2): 56-58.
LV Ping, TAN Guang-ming, WANG Jun. Cohesive sediment after deposition and consolidation[J]. China Rural Water and Hydropower, 2008 (2): 56-58.
[6] TAN Guang-ming, JIANG Lei, SHU Cai-wen, et al. Experimental study of scour rate in consolidated cohesive sediment[J]. Journal of Hydrodynamics, Ser. B, 2010, 22(1): 51-57.
[7] BANASIAK R, VERHOEVEN R, DE SUTTER R, et al. The erosion behaviour of biologically active sewer sediment deposits: Observations from a laboratory study[J]. Water Research, 2005, 39(20): 5221-5231.
[8] TAIT S J, ASHLEY R M, VERHOEVEN R, et al. Sewer sediment transport studies using an environmentally controlled annular flume[J]. Water Science and Technology, 2003, 47(4): 51-60.
[9] SCHELLART A, VELDKAMP R, KLOOTWIJK M, et al. Detailed observation and measurement of sewer sediment erosion under aerobic and anaerobic conditions[J]. Water Science and Technology, 2005, 52(3): 137-146.
[10] CHEN G H, LEUNG D H W, HUNG J C. Biofilm in the sediment phase of a sanitary gravity sewer[J]. Water Research, 2003, 37(11): 2784-2788.
[11] ZAHRAEIFARD V, DENG Z. Modeling sediment resuspension-induced DO variation in fine-grained streams[J]. Science of the Total Environment, 2012, 441: 176-181.
[12] 陈家煌,李丽.黏性土颗粒分析技术改进初探[J].合肥工业大学学报: 自然科学版, 2003, 26(2): 311-314.
CHEN Jia-huang, LI Li. Preliminary discussion on the improvement of granulometry of clay soil[J]. Jourmal of Hefei University of Technology: Natural Science, 2003, 26(2): 311-314.
[13] GARCIA-ARAGON J, DROPPO I G, KRISHNAPPAN B G, et al. Erosion characteristics and floc strength of Athabasca River cohesive sediments: towards managing sediment-related issues[J]. Journal of Soils and Sediments, 2011, 11(4): 679-689.
[14] GALPERI J, ROCHER V, MOILLERON R, et al. Review on the hydrocarbon fate within combined sewers: case of the “Le Marais” urban catchment (1994-2005)[J]. Polycyclic Aromatic Compounds, 2007, 27(2): 123-141.
[15] FRANKS G V, ZHOU Y. Relationship between aggregate and sediment bed properties: Influence of inter-particle adhesion[J]. Advanced Powder Technology, 2010, 21(4): 362-373.

No related articles found!