Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1593-1598    DOI: 10.3785/j.issn.1008-973X.2013.09.012
土木工程、工程力学     
胶黏钢-混凝土组合梁的界面行为数值分析
王玉强1,张宽地2,陈晓东1
1. 浙江水利水电学院 水利工程系,浙江 杭州 310018;2 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100
Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
WANG Yu-qiang1,ZHANG Kuan-di2,CHEN Xiao-dong1
1. Department of Hydraulic Engineering,Zhejiang University of  Water Resources and Electric Power,
Hangzhou 310018,China ;2.College of Water Conservancy and Architectural Engineering, Northwest
Agricultural and Forestry University, Yangling 712100,China
 全文: PDF  HTML
摘要:

根据推出的试验测试数据,将黏胶/混凝土界面的剪切-滑移行为用具备损伤本构关系的弹簧单元来模拟,建立胶黏钢-混凝土组合梁的三维非线性有限元模型.基于模拟结果,揭示了组合梁黏胶/混凝土界面的黏结应力分布规律及脱胶剥离过程.分析结果表明:弹性模量小的黏胶剂更有利于界面的剪力均匀传递,但会引起混凝土板和钢梁间产生大的相对滑动,导致结构整体承载力降低.胶黏组合梁的界面脱胶剥离是一个突发的典型脆性破坏过程,会产生灾难性后果,在设计过程中需引起足够重视.

Abstract:

The shear-slip behavior of adhesive/concrete interface was simulated by using the spring element with a damage-type law from the push-out experiment data. A three-dimensional nonlinear finite element model for the adhesive bonded steel-concrete composite beams was proposed. Based on the simulation results, the bonding stress distribution and the debonding process in the adhesive/concrete interface were revealed.  Adhesive with less value of elastic modulus makes the shear transformation more evenly, but it may induce a bigger relative slip between the concrete slab and the steel girder, which may impair the carrying capacity of the composite beams. Numerical results reveal that the debonding failure is a typical brittle destroy process with a catastrophic failure of the composite beams and must be paid enough attention during the design process.

出版日期: 2013-09-01
:     
作者简介: 王玉强(1978-),男,副教授,主要从事水利工程结构及施工的教学与研究工作.E-mail:wangyq@zjwchc.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.

WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams. J4, 2013, 47(9): 1593-1598.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.012        http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1593

[1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8.
NIE Jian-guo,YU Zhi-wu. Research and practice of composite steel-concrete beams in China [J]. China Civil Engineering Journal, 1999, 32(2): 3-8.
[2] 蒋秀根, 剧锦三, 傅向荣. 考虑滑移效应的钢-混凝土组合梁弹性应力计算[J]. 工程力学, 2007, 24(1): 143-146.
JIANG Xiu-gen,JU Jin-san, FU Xiang-rong. Analysis of elastic stress of composite steel-concrete beams considering slip effect[J]. Engineering Mechanics, 2007, 24(1): 143-146.
[3] SWAMY R N, JONES R, BLOXHAM J W. Structural behaviour of reinforced concrete beams strengthened by epoxy-boned steel plates[J]. Structural Engineer: Part A, 1987, 65(2): 59-68.
[4] LU X Z, TENG J G, YE L P, JIANG J J. Bond-slip models for FRP sheets/plates bonded to concrete[J]. Engineering Structures, 2005, 27(6): 920-937.
[5] FERRIER E, QUIERTANT M, BENZARTI K, et al. Influence of the properties of externally bonded CFRP on the shear behavior of concrete/composite adhesive joints[J]. Composites Part B: Engineering, 2010, 41(5): 354-362.
[6] YUAN H, TENG J G, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engineering Structures, 2004, 26(5): 553-565.
[7] NORDIN H, TLJSTEN B. Testing of hybrid FRP composite beams in bending[J]. Composites Part B: Engineering, 2004, 35(1): 27-33.
[8] BOUAZAOUI L, PERRRNOT G, DELMAS Y, et al. Experimental study of bonded steel concrete composite structures[J]. Journal of Constructional Steel Research, 2007, 63: 1268-1278.
[9] THOMANN M, LEBET J P. A mechanical model for connections by adherence for steel-concrete composite beams[J]. Engineering Structures, 2008, 30(1): 163-173.
[10] ZHAO G, LI A. Numerical study of a bonded steel and concrete composite beam[J]. Computers and Structures, 2008, 86: 18301838.
[11] SI LARBI A, FERRIER E, JURKIEWIEZ B, et al . Static behaviour of steel concrete beam connected by bonding[J]. Engineering Structures, 2007, 29(6): 1034-1042.
[12] BERTHET J F, YURTDAS I, DELMAS Y, et al. Evaluation of the adhesion resistance between steel and concrete by push out test[J]. International Journal of Adhesion and Adhesives, 2011, 31(2): 75-83.
[13] Eurocode 4. Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings[S]. London :European Committee for Standardization (CEN), 2004.
[14] CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J]. ACI Journal Proceedings, 1985, 82(6): 797-804.
[15] ACI 318R-08. Building code requirements for structural concrete and commentary[S]. Farmington Hills, MI :American Concrete Institute, 2008.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[3] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[4] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[5] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[9] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[10] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[13] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[14] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.
[15] 王鹿军, 吕征宇. 基于LSSVM的电梯交通模式的模糊识别[J]. J4, 2012, 46(7): 1333-1338.