Please wait a minute...
J4  2013, Vol. 47 Issue (7): 1178-1185    DOI: 10.3785/j.issn.1008-973X.2013.07.007
土木工程     
城市住区室外热环境三维分布特征模拟——以杭州为例
王伟武1,杨华杰1,邵宇翎1,汤书福2
1. 浙江大学 城市规划工程与信息技术研究所,浙江 杭州 310058;
2. 浙江大学 生态规划与景观设计研究所,浙江 杭州 310058 
Three-dimensional spatial distribution simulation of outdoor thermal environment in different types of urban residential areas in
summer daytime——a case of Hangzhou
WANG Wei-wu1, YANG Hua-jie1, SHAO Yu-ling1, TANG Shu-fu2
1. Institute of Urban Planning Engineering and Information Technology, Zhejiang University, Hangzhou 310058, China;
2. Institute of Ecological Planning and Landscape Design, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

选取杭州城西3个现实住区为模拟对象,应用室外水平与垂直气温实地观测与CFD数值模拟相结合的方法,量化模拟并比较在无风与微风条件下夏季不同建筑布局的住区室外热环境的三维分布特征.结果表明,在相似的下垫面特征、太阳辐射和建筑体表面热属性条件下,考虑导热和自然对流条件下室外模拟温度比仅考虑导热条件更接近于现实室外热环境,即相差幅度为1~3 ℃.在垂直方向上,随着高度的上升,室外热环境逐步由受下垫面导热的影响为主转变为受太阳辐射与自然对流影响为主,纵向气温变化幅度为2.0~2.5 ℃.在通常情况下,点式高层的住区室外热环境优于围合高层与行列式多层住区.

Abstract:

Three urban residential areas in the west of Hangzhou were chosen as modeling objects. Horizontal and vertical outdoor observations of temperature and CFD numerical simulation techniques were used.  The three-dimensional distribution of the outdoor residential thermal environment was simulated and the features of outdoor residential thermal environment were compared under the breeze or calm wind conditions in three different building distribution residential areas. Results show that  under similar circumstances of underlying surface distribution,solar radiation and thermophysical properties of the buildings surfaces, considering the heat conductivity and natural convection conditions is closer to reality than only considering the heat conductivity conditions, and the discrepancy is  1~3 ℃.  As the vertical height increases,the influence factor transforms from underlying surface to solar radiation and natural convection effects, and air temperature variation in the vertical direction is  2.0~2.5 ℃. Under normal circumstances,the outdoor thermal environment of dotted residential area is better than that of enclosed residential area and that of lined-up residential area.

出版日期: 2013-07-01
:  X 16  
基金资助:

国家“863”高技术发展计划资助项目(2007AA12Z232).

作者简介: 王伟武(1972-),男,副教授,从事遥感与GIS技术在城市规划和环境科学中的研究.E-mail:weiwuwang@zju.edu.cn 
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王伟武,杨华杰,邵宇翎,汤书福. 城市住区室外热环境三维分布特征模拟——以杭州为例[J]. J4, 2013, 47(7): 1178-1185.

WANG Wei-wu, YANG Hua-jie, SHAO Yu-ling, TANG Shu-fu. Three-dimensional spatial distribution simulation of outdoor thermal environment in different types of urban residential areas in
summer daytime——a case of Hangzhou. J4, 2013, 47(7): 1178-1185.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.07.007        http://www.zjujournals.com/eng/CN/Y2013/V47/I7/1178

[1]CHEN Hong, OOKA R, HARAYAMA K, et al. Study on outdoor thermal environment of apartment block in Shenzhen, China with coupled simulation of convection, radiation and conduction [J]. Energy and Building, 2004, 36(12): 1247-1258.
[2] CHEN Hong, OOKA R, HUANG Hong. Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation [J]. Building and Environment, 2009, 44(11): 2290-2299.
[3] TAKAHASHI K, YOSHIDA H, TANAKA Y, et al. Measurement of thermal environment in Kyoto city and its prediction by CFD simulation [J]. Energy and Buildings, 2004, 36(8): 771-779.
[4] GIRIDHARANA R, LAU S S, GANESANA S, et al. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong [J]. Building and Environment, 2007, 42(10): 3669-3684.
[5] YANG Feng, LAU S S, QIAN Feng. Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery [J]. Building and Environment, 2010, 45(1): 115-134.
[6] LI Xian-ting, YU Zhen, ZHAO Bin, et al. Numerical analysis of outdoor thermal environment around buildings [J]. Building and Environment, 2005, 40(6): 853-866.
[7] ALI-TOUDERT F, MAYER H. Effects of asymmetry, galleries, overhanging facades and vegetation bon thermal comfort in urban street canyons [J]. Solar Energy, 2007, 81(6): 742-754.
[8] 林波荣,李莹,朱颖心.利用改进的CTTC模型对住区热环境进行预测与评价[C]∥中国建筑学会建筑物理分会第8届年会论文集.天津: [s. n.], 2000: 182-186.
LIN Bo-rong, LI Ying, ZHU Ying-xin. Prediction and evaluation about resdential district thmeral environment by revised CTTC modle [C]∥Proceedings of the 8rd Building Physics Conference of Chinese Architecture Institute. Tianjin: [s. n.], 2000: 182-186.
[9] 孙越霞,卢建津,董文志,等.基于CTTC和STTC模型的城市热岛分析[J].煤气与热力, 2005, 25(5): 11-17.
SUN Yue-xia, LU Jian-jin, DONG Wen-zhi, et al. Uban heat island analysis based on CTTC and STTC modles [J]. Gas and Power, 2005, 25(5): 11-17.
[10] 王伟武,邵宇翎.高层住区夏季昼间室外热环境三维布规律研究:以杭州城市为例[J].建筑学报,2011(2): 23-27.
WANG Wei-wu, SHAO Yu-ling. Study on three-dimensional distribution law of outdoor thermal environment in high-rise residential district in summer daytime: taking Hangzhou as example [J]. Journal of Architecture, 2011(2): 23-27.
[11] 于勇. FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.
[12] 徐昉.计算流体力学(CFD)在可持续设计中的应用[J].建筑学报,2004(8): 65-67.
XU Fang. The application of computational fluid dynamics in sustainable design [J]. Journal of Architecture, 2004(8): 65-67.
[13] 柳孝图. 城市物理环境与可持续发展[M].南京:东南大学出版社,1999.
[14] 甘源. 居住区热环境规划与微气候设计研究[D].重庆:重庆大学, 2010: 58-63.
GAN Yuan. Research on planning of residential thermal environment and micro climate design [D]. Chongqing: Chongqing University, 2010: 58-63.
[15] 赵炎,卢军,王金沙. 建筑群布置形式对小区热环境影响的模拟分析[C]∥第4届国际智能、绿色建筑与建筑节能大会论文集. 北京: [s. n.], 2008: 462-467.
ZHAO Yan, LU Jun, WANG Jin-sha. Modeling analysis about the influence of building cluster layout on the thermal environment [C]∥Proceedings of the 4th International Conference on Intelligent, Green and Energy-efficient Building. Beijing: [s. n.], 2008: 462-467.

[1] 王伟武, 张雍雍. 城市住区热环境可控影响因素定量分析[J]. J4, 2010, 44(12): 2348-2353.