Please wait a minute...
J4  2012, Vol. 46 Issue (5): 818-823    DOI: 10.3785/j.issn.1008-973X.2012.05.007
土木工程     
钛酸盐纳米线对水中Fe(II)和Mn(II)的吸附
陈心凤,邵卫云,叶苗苗
浙江大学 土木工程学系,浙江 杭州 310058
Study on  adsorption of Fe(II) and Mn(II) in aqueous
by titanate nanowires
CHEN Xin-feng, SHAO Wei-yun, YE Miao-miao
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

以钛酸四丁酯为钛源,采用水热法制备钛酸盐纳米线.利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对钛酸盐纳米线的物化性能进行表征.通过对水中Fe(II)和Mn(II)的静态吸附试验,考察钛酸盐纳米线的吸附活性.结果表明,水热法制备的钛酸盐纳米线直径分布在50~400 nm,长度可达几微米甚至几十微米.在温度为25 ℃、溶液pH为6.68的条件下,钛酸盐纳米线对水中Fe(II)和Mn(II)的饱和吸附量分别达到39.89和34.67 mg/g,吸附过程较好地符合Freundlich吸附等温线.采用Lagergren一级吸附动力学模型能够较好地描述钛酸盐纳米线的吸附动力学.此外,在本实验条件下,钛酸盐纳米线对水中Fe(II)和Mn(II)的吸附去除率随溶液pH值及吸附剂投加量的增大而增大.

Abstract:

Titanate nanowires have been synthesized via a simple hydrothermal method by using tetrabutyl titanate as the titanium source. The asprepared products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The adsorption capacity of Fe(II) and Mn(II) in aqueous by titanate nanowires was tested in a static system. Results show that titanate nanowires have a diameter of about 50~400 nm and a length up to a few micrometers. The adsorption capacities of Fe(II) and Mn(II) by titanate nanowires in aqueous at 25 ℃, pH 6.68 are 39.89 and 34.67 mg/g, respectively. The equilibrium adsorption data for tianate nanowires are fitted to Freundlich isotherm. The adsorption kinetics are well described by the Lagergren first-order equation. In addition, the removal rates of Fe(II) and Mn(II) increase with the increasing of the solution pH value and the dosage of titanate nanowires .

出版日期: 2012-05-01
:  X 131.2  
基金资助:

国家“水体污染控制与治理”科技重大专项沿海岛屿村镇饮用水安全保障适用技术研究与工程示范课题(2008ZX07425-008).

通讯作者: 邵卫云,女,副教授.     E-mail: shaowy@zju.edu.cn
作者简介: 陈心凤(1986-),女,硕士生,主要从事水处理研究.E-mail:chenxinfeng_22@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈心凤,邵卫云,叶苗苗. 钛酸盐纳米线对水中Fe(II)和Mn(II)的吸附[J]. J4, 2012, 46(5): 818-823.

CHEN Xin-feng, SHAO Wei-yun, YE Miao-miao. Study on  adsorption of Fe(II) and Mn(II) in aqueous
by titanate nanowires. J4, 2012, 46(5): 818-823.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.05.007        http://www.zjujournals.com/eng/CN/Y2012/V46/I5/818

[1] 薛罡,赵洪宾.地下水除铁除锰技术新进展[J].给水排水, 2002, 28(7):26-28.
XUE Gang, ZHAO Hongbin. The new development of technology about removal of iron and manganese from groundwater[J]. Water and Wastewater Engineering, 2002, 28(7):26-28.
[2] 姜义,张吉库.地下水中铁、锰的存在形式及去除技术探讨[J].环境保护科学, 2003, 29(115):32-34.
JIANG Yi, ZHANG Jiku. Research on the form of Fe and Mn in underground water and removal technology [J]. Environment Protection Science, 2003,29(115):32-34.
[3] PACINI V A, INGALLINELLA A M, SANGUINETTI G. Removal of iron and manganese using biological roughing up flow filtration technology[J].Water Research,2005,39.(18):4463-4475.
[4] KNOCKE W R, VAN BENSCHOTEN J E, KEARNEY M J, et al. Kinetics of manganese and iron oxidation by potassium permanganate and chlorine dioxide[J].Journal American Water Works Association,1991,83(6):80-87.
[5] 赵良元,胡波,朱迟,等.Na型斜发沸石去除水中铁锰及其再生方法研究[J].环境科学与管理,2008,33(1):65-69.
ZHAO Liangyuan, HU Bo, ZHU Chi, et al. Removal of Fe(II) and Mn(II) in drinking water by Naclinoptilolite and establishment of regeneration method [J].Environmental Science and Management, 2008,33(1):65-69.
[6] 赵玉华,常启雷,李妍.NaOH改性沸石吸附地下水中铁锰效能研究[J].辽宁化工,2009,38(12):857-860.
ZHAO Yuhua, CHANG Qilei, LI Yan. Study on removing iron and manganese in ground water with zeolite modified by NaOH[J]. Liaoning Chemiccal Industry, 2009, 38(12):857-860.
[7] JUSOH A B, CHENG W H, LOW W M, et al. Study on the removal of iron and manganese in groundwater by granular activated carbon [J].Desalination,2005,182(1/3):347-353.
[8] SHARMA Y C, UMA, SINGH S N, et al. Fly ash for the removal of Mn(Ⅱ) from aqueous solutions and waste waters[J]. Chemical Engineering Journal, 2007, 132(1/3):319-323.
[9] RAUf N, TAHIR S S. Thermodynamics of Fe(Ⅱ) and Mn(Ⅱ) adsorption onto bentonite from aqueous solutions [J]. Chem.Thermodynamics, 2000, 32(5):651-658.
[10] SAFAEI M, RASHIDZADEH M, SARRAFMAMOORY R, et al. Synthesis and characterization of oneDimensional titanate manostructures via an alkaline hydrothermal method of a low surface area TiO2Anatase[J].Ceramic Processing Research, 2010,11(2):277-280.
[11] HAFEZ H S. Synthesis of highlyactive singlecrystalline TiO2 nanorods and its application in environmental photocatalysis [J].Materials Letters,2009,63(17):1471-1474.
[12] WEI Mingdeng, KONISHI Y, Zhou Haoshen, et al. Utilization of titanate manotubes as an electrode material in dyesensitized solar cells [J]. The Electrochemical Society, 2006,153(6):1232-1236.
[13] YANG Dongjiang, ZHENG Zhanfeng, Liu Hongwei, et al. Layered titanate nanfibers as Efficient adsorbents for removal of toxic radioactive and heavy metal ions from water[J].J.Rhys.Chem, 2008,112(42):16275-16280.
[14] YU Y X, XU D S, Singlecrystalline TiO2 nanorods: Highly active and easily recycled photocatalysts\
[J\]. Appl Catal B: Environ, 2007, 73(1/2):166-171.
[15] CARDOSO V A, SOUZA A G, SARTORATTO P C, et al. The ionic exchange process of cobalt, nickel and copper(Ⅱ) in alkaline and acidlayered titanates[J]. Colloids and surfaces,2004,248(1/3):145-149.

[1] 曾超,俞亭超,王晓卉,张利娟. 二氧化锰改性多壁碳纳米管吸附水中Sb(Ⅲ)[J]. J4, 2013, 47(11): 1951-1957.
[2] 王晓卉,俞亭超,李聪,叶苗苗. 高锰酸钾改性活性炭对水中Sb(Ⅲ)的吸附[J]. J4, 2012, 46(11): 2028-2034.