Please wait a minute...
J4  2012, Vol. 46 Issue (3): 542-548    DOI: 10.3785/j.issn.1008-973X.2012.03.024
机械工程     
采用缺口件等效与渐进插值法预测构件疲劳极限
陈晓平1,2,俞小莉1,胡如夫2,李建锋3
1. 浙江大学 能源工程学系,浙江 杭州 310027;
2. 宁波工程学院 机械工程学院,浙江 宁波 315016;
3. 潍柴动力杭州分公司,浙江 杭州 310012
Component fatigue limit prediction based on notched specimen equivalence and asymptotic interpolation integrated method
CHEN Xiao-ping1,2, YU Xiao-li1, HU Ru-fu2, LI Jian-feng3,
1.Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China;
2.School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315016, China;
3.Hangzhou Branch, Weichai Power Co Ltd, Hangzhou 310012, China
 全文: PDF  HTML
摘要:

 以发动机曲轴为例,以等效椭圆孔板长轴长度、短轴长度及均布载荷为变量,采用拟合方法使等效椭圆孔板的应力集中处应力场与曲轴受载荷时应力集中处的应力场尽可能一致,将曲轴应力集中等效为标准椭圆孔缺口件.通过等效处理,曲轴疲劳极限载荷的求解问题可以转换为椭圆孔缺口件的疲劳极限求解问题,结合已有曲轴的疲劳强度试验数据得出该曲轴材料的特征尺寸,采用渐进插值法结合短裂纹扩展理论,推导出预测曲轴的疲劳极限载荷.

Abstract:

 An integrated method of notched specimen equivalence and asymptotic interpolation to predict component fatigue limit was put forward. The engine crankshaft was given as an example, the length of long axis, length of short axis and the uniform load of the equivalent elliptic orifice plate were taken as variables, and the fitting method was used to make the stress field of the crankshaft stress concentration range under load and the stress field of the equivalent elliptic orifice plate stress concentration range as consistent as possible. By this way, the fatigue limit load of the crankshaft can be simplified into that of the equivalent elliptic orifice plate. The feature size of crankshaft material can be reasoned with the experimental data, the fatigue limit load of crankshaft can then be predicted using an asymptotic interpolation method and the short crack growth theory.

出版日期: 2012-03-01
:  TH 123.3  
基金资助:

浙江省教育厅科研资助项目(Y201009961);宁波市自然科学基金资助项目(2011A610133)

通讯作者: 俞小莉,女,教授.     E-mail: yuxl@zju.edu.cn
作者简介: 陈晓平(1978-),男,副教授,从事汽车零部件可靠性耐久性技术研究.E-mail:chxp1978@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈晓平俞小莉,胡如夫,李建锋. 采用缺口件等效与渐进插值法预测构件疲劳极限[J]. J4, 2012, 46(3): 542-548.

CHEN Xiao-ping, YU Xiao-li, HU Ru-fu, LI Jian-feng,. Component fatigue limit prediction based on notched specimen equivalence and asymptotic interpolation integrated method. J4, 2012, 46(3): 542-548.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.03.024        http://www.zjujournals.com/eng/CN/Y2012/V46/I3/542

[1] TIAN Z S,ZHAO F D.Stress concentration in a solid with symmetric u-shaped grooves[J].Strain Analysis,2001,36(2):211-217.
[2] 李成,郑艳萍,铁瑛. 不同荷载作用下圆孔板孔边及孔口附近应力场的仿真分析[J].中国机械工程,2008,19(1):99-102.
LI Cheng ZHENG Yan-ping, TIE Ying. Simulation on the stress field of plate with circular hole at hole-edge and aperture by different loads[J].China Mechanical Engineering,2008,19(1):99-102.
[3] 程育仁,缪龙秀,侯炳麟. 疲劳强度[M].北京:中国铁道出版社,1990:49.
[4] TAYLOR D. Geometrical effects in fatigue: a unifying theoretical model[J].Int J Fatigue, 1999,21(5):413-420.
[5] TAYLOR D. The theory of critical distances[J]. Engineering Fracture Mechanics, 2008,75(7):1696-1705.
[6] TAYLOR D. The theory of critical distances: a history and a new definition[J]. Structural Durability and Health Monitoring, 2006, 2(1): 1-10.
[7] TAYLOR D. Crack modelling: a novel technique for the prediction of fatigue failure in the presence of stress concentrations[J]. Computational Mechanics,1997,20(1/2): 176-180.
[8] WANG G, TAYLOR D, BOUQUIN B, et al. prediction of fatigue failure in a camshaft using the crack modelling method[J]. Engineering Failure Analysis, 2000,7(3): 189-197.
[9] TAYLOR D, CIEPALOWICZ A J, ROGERS P, et al. Prediction of fatigue failure in a crankshaft using the technique of crack modelling[J].Fatigue & Fracture of Engineering Materials & Structures, 1997,20(1):13-21.
[10] TAYLOR D, CARR A J. The crack-modelling technique: optimization of parameters[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(1): 41-50.
[11] TOVO R, LIVIERI P. An implicit gradient application to fatigue of complex structures[J]. Engineering Fracture Mechanics, 2008,75(7):1804-1814.
[12] TOVO R, LIVIERI P, BENVENUTI E. An implicit gradient type of static failure criterion for mixed-mode loading[J]. Int J Fract,2006,141(3):497-511.
[13] TOVO R, LIVIERI P. An implicit gradient application to fatigue of sharp notches and weldments[J]. Engineering Fracture Mechanics,2007,74(4):515-526.
[14] YAO W X. Stress field intensity approach for predicting fatigue life[J]. International Journal of Fatigue, 1993,15(3):213-219.
[15] 姚卫星. 金属材料疲劳行为的应力场强法描述[J].固体力学学报,1997,18(1):38-48.
YAO Wei-xing. The description for fatigue behaviours of metals by stress field intensity approach[J]. Acta Mechnica Solida Sinica, 1997,18(1):38-48.
[16] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2004:153-163 .
[17] CHEN X P, YU X L, HU R F, et al. Prediction of crankshaft fatigue limit load by crack-modeling technique[J]. Journal of Advanced Manufacturing Systems, 2011,10(1): 127-134.
[18] 顿志林, 高家美. 弹性力学及其在岩土工程中的应用[M]. 北京: 煤炭工业出版社, 2003:262.
[19] LIU Y M, SANKARAN M. Fatigue limit prediction of notched components using short crack growth theory and an asymptotic interpolation method[J]. Engineering Fracture Mechanics, 2009,76(15): 2317-2331.
[20] 杨桂通. 弹性力学[M]. 北京: 高等教育出版社, 1998:109.
[21] HADDAD E I, TOPPER M H, SMITH K N. Prediction of nonpropagating cracks[J]. Engineering Fracture Mechanics, 1979,11(3):573-584.
[22] 俞小莉,周迅,刘震涛,等.智能型曲轴弯曲疲劳试验系统[J].兵工学报,2004,25(3):368-371.
YU Xiao-li, ZHOU Xun, LIU Zhen-tao,et al. An intelligent fatigue test system for crankshaft[J]. Acta Armamentarii,2004,25(3):368-371.
[23] 周迅,俞小莉. 谐振式曲轴弯曲疲劳试验恒载荷控制方法[J].农业机械学报,2006,37(12):168-171,181.
ZHOU Xun, YU Xiao-li. Investigation of constant-load control method for resonant crankshaft fatigue test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006,37(12):168-171,181.

No related articles found!