Please wait a minute...
J4  2010, Vol. 44 Issue (10): 1992-1997    DOI: 10.3785/j.issn.1008-973X.2010.10.025
岩土工程、土木及建筑工程     
梁元修正拉格朗日法的刚体检验和节点力计算
张年文1,2, 童根树1
1.浙江大学 土木工程系,浙江 杭州 310027;2.广东石油化工学院 土木工程系,广东 茂名 525000
Rigid body test and recovery of nodal forces for beam element in updated Lagrangian formulation
ZHANG Nian-wen1, 2, TONG Gen-shu1
1.Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China; 2.Department of Civil Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
 全文: PDF  HTML
摘要:

分析梁单元修正拉格朗日法的刚体检验和增量节点力计算.根据欧拉伯努利假定,推导考虑2阶效应的截面转角表达式,得出转角不仅与横向位移导数有关,还与轴向位移导数有关.采用虚功原理,推导出符合刚体检验的几何刚度矩阵,指出几何刚度矩阵不满足刚体检验的原因是采用了转角与横向位移导数的线性假定.分析多种计算增量节点力的方法;利用同一刚度矩阵计算增量节点位移、增量节点力,得出欲求构形的节点力向量后,必须通过由已知构形到欲求构形的近似坐标变换得到欲求构形单元的轴力、剪力、弯矩和扭矩.数值计算结果表明,采用切线刚度矩阵计算增量节点力的方法是有效的,几何刚度矩阵通过刚体检验与否对计算结果无明显影响.

Abstract:

The rigid body test and the recovery of incremental nodal forces were analyzed for an updated Lagrangian formulation of beam element. The expressions of crosssectional rotation considering the second order effects were formulated based on the EulerBernoulli hypothesis. Results showed that a crosssectional rotation was related to the derivative of axial displacement and the derivative of transversal displacement. A geometric stiffness matrix which passed a rigid body test was derived by using the principle of virtual work. The reason for some geometric stiffness matrix does not pass a rigid body is the adoption of a linear relation between the crosssectional rotation and the derivative of transversal displacement. Several methods for recovery of the nodal forces were analyzed. For the method with the same stiffness matrix to calculate incremental nodal displacements and incremental nodal forces, it is essential to transform previous nodal forces into axial forces, shear forces, bending moments and torques in the desired configuration by an approximate coordinate transformation between the unknown configuration and the desired configuration after the nodal forces were obtained for a desired configuration. The numerical examples demonstrate that it is effective to recover the incremental nodal forces with a tangent stiffness matrix, and a geometric stiffness matrix passing a rigid body test or not has no significant influence on the numerical results.

出版日期: 2010-10-01
:  TU 311.4  
通讯作者: 童根树,男,教授.     E-mail: tonggs@zju.edu.cn
作者简介: 张年文(1971—),男,湖北宣恩人,讲师,从事结构分析研究.E-mail: nwzhang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张年文, 童根树. 梁元修正拉格朗日法的刚体检验和节点力计算[J]. J4, 2010, 44(10): 1992-1997.

ZHANG Nian-Wen, TONG Gen-Shu. Rigid body test and recovery of nodal forces for beam element in updated Lagrangian formulation. J4, 2010, 44(10): 1992-1997.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.10.025        http://www.zjujournals.com/eng/CN/Y2010/V44/I10/1992

[1] 龙驭球,包世华,匡文起,等.结构力学教程(II)[M].北京:高等教育出版社,2001: 5.

[2] YANG Y B, YAU J D, LEU L J. Recent developments in geometrically nonlinear and postbuckling analysis of framed structures [J]. Applied Mechanics Reviews, 2003, 56(4): 431-449.
[3] YANG Y B, CHIOU H T. Rigid body motion test for nonlinear analysis with beam elements [J]. Journal of Engineering Mechanics, 1987, 113(9): 1404-1419.

[4] YANG Y B, LIN S P, CHEN C S. Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation [J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(7): 1178-1192.

[5] 童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005: 303-304.

[6] 殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社,1987: 132-134.

[7] YANG Y B, LIN S P, LEU L J. Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation [J]. Engineering Structures, 2007, 29(6): 1189-1200.

[8] GATTASS M, ABEL J F. Equilibrium considerations of the updated Lagrangian formulation of beamcolumns with natural concepts [J]. International Journal for Numerical Methods in Engineering, 1987, 24(11): 2119-2141.

[9] ZHANG N W, TONG G S. A corotational updated Lagrangian formulation for a 2D beam element with consideration of the deformed curvature [J]. Journal of Zhejiang University: Science A, 2008, 9(11): 1480-1489.

[10] 段海娟,张其林.考虑翘曲效应的薄壁曲梁几何非线性分析[J].工程力学,2004,21(5): 157-160.


DUAN Haijuan, ZHANG Qilin. Effect of warping in geometric nonlinear analysis of curved thinwalled beams [J]. Engineering Mechanics, 2004,21(5): 157-160.

[11] 聂国隽,钱若军.薄壁梁元几何非线性分析模型的研究[J].空间结构,2002,8(3): 35-40.

NIE Guojun, QIAN Ruojun. Research on the geometric nonlinear analytical model of thinwalled beam element [J]. Spatial Structures, 2002, 8(3): 35-40.

[12] BATHE K J, WILSON E L, RAMM E. Finite element formulations for large deformation dynamic analysis [J]. International Journal for Numerical Methods in Engineering, 1975, 9(2): 353-386.

[13] BATHE KJ, BOLOURCHI S. Large displacement analysis of threedimensional beam structures [J]. International Journal for Numerical Methods in Engineering, 1979, 14(7): 961-986.

[14] WILLIAMS F W. An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17(4): 451-469.

[15] SIMO J C, VUQUOC L. A threedimensional finitestrain rod model. part II: computational aspects [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 58(1): 79-116.

[1] 李忠学, 徐晋, 刘永方, 等. 采用应变差分离法的新型协同转动三边形曲壳单元[J]. J4, 2009, 43(8): 1506-1512.