Please wait a minute...
J4  2010, Vol. 44 Issue (8): 1562-1566    DOI: 10.3785/j.issn.1008-973X.2010.08.023
能源工程     
微纳米金属铁粉的燃烧特性试验研究
杨丽,朱燕群,王智化,王国军,周俊虎,岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Experimental study of combustion characteristics of
micron and nano iron powders
Experimental study of combustion characteristics of
micron and nano iron powders
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

运用热重分析手段对微纳米尺度金属铁粉燃料的着火和燃烧特性进行了研究.通过不同微米、纳米尺度金属铁粉燃烧过程的热重试验,分析不同粒径金属铁粉的燃烧特性,计算不同微米、纳米尺度金属铁粉在空气中燃烧的着火点、最高燃烧温度和表观活化能.结果表明,30~110 nm粒径范围的纳米尺度铁粉的平均着火温度为280 ℃左右,最高燃烧温度为750~950 ℃,表观活化能为20~30 kJ/mol;2~5 μm亚微米级铁粉着火点为380 ℃,最高燃烧温度为950~990 ℃,表观活化能为37 kJ/mol;而40 μm的微米级铁粉着火温度为600 ℃左右,最高燃烧温度达到1 000 ℃,表观活化能为58 kJ/mol.随着颗粒粒径从微米减小到纳米尺度,金属颗粒的比表面积迅速增大,造成TG/DTG曲线上最大增重梯度所对应的反应温度和最高燃烧温度均明显降低,燃烧着火点温度明显降低,表观活化能迅速减小,因此反应活性随粒径的减小迅速提高.

Abstract:

The ignition and combustion characteristics of micronano sized iron particle metal fuels were investigated by thermogravimetry. Based on thermogravimetric experimental results, the combustion characteristics of the iron particle metal fuels varied from micron to nano size were obtained and analyzed. Ignition temperatures as well as maximum combustion temperatures and apparent activation energies of the different sized iron particles burnning in air were calculated and determined. Results indicate that: the ignition temperature of 30~110 nm sized iron particles is about 280 ℃, the maximum combustion temperature is 750~950 ℃ and the activation energy is about 20~30 kJ/mol; the ignition temperature of 2~5 μm submicron sized iron particle is about 380 ℃ with maximum combustion temperature 950~990 ℃ and activation energy 37 kJ/mol; while the values of 40 μm micron sized iron particles are 600 ℃, 1 000 ℃, and 58 kJ/mol, respectively. With particle size decreasing from micron down to nano scale, surface area of the iron particles increases dramatically causing the obviously decreasing of temperature at maximum weight gradient in TG/DTG curves and final maximum combustion temperature. The ignition temperature and activation energy all drop apparently with the size changing of particles. Therefore, activities of the iron particle metal fuels can be greatly enhanced with decreasing of particle size.

出版日期: 2010-09-21
:  TF 122.3  
基金资助:

博士点基金新教师基金资助项目(200803351056).

作者简介: 杨丽(1983-),女,湖北随州人,博士生,主要从事纳米金属燃烧方面的研究.E-mail:cws008@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨丽, 朱燕群, 王智化, 王国军, 周俊虎, 岑可法. 微纳米金属铁粉的燃烧特性试验研究[J]. J4, 2010, 44(8): 1562-1566.

YANG Li, SHU Yan-Qun, WANG Zhi-Hua, WANG Guo-Jun, ZHOU Dun-Hu, CEN Ge-Fa. Experimental study of combustion characteristics of
micron and nano iron powders. J4, 2010, 44(8): 1562-1566.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.08.023        http://www.zjujournals.com/eng/CN/Y2010/V44/I8/1562

[1] RISHA G A, HUANG Y, YETTER R A, et al. Effect of particle size on combustion of aluminum particle dust in air [J]. Combustion and flame, 2009, 156(1): 513.
[2] TRUNOV M A, SCHOENITZ M, DREIZIN E L. Ignition of aluminum powders under different experimental conditions [J]. Propellants Explosives Pyrotechnics, 2005, 30(1): 3643.
[3] ALAVI S, THOMPSON D L. Molecular dynamics simulations of the melting of aluminum nanoparticles [J]. Journal of Physical Chemistry A, 2006, 110(4): 15181523.
[4] AUMANN C E, SKOFRONIC G L, MARTIN J A. Oxidation behavior of aluminum nanopowders [J]. Journal of Vacuum Science and Technology B, 1995, 13(3):11781183.
[5] MENCH M M. Comparison of the thermal behavior of regular and ultrafine aluminum [J]. Combustion Science and Technology,1998, 135(16): 269292.
[6] BEACH D, SUMPTER B. Running on iron: metal nanoparticles show promise as future fuels [J]. Oak Ridge National Laboratory Review, 2006, 39(1): 26.
[7] UTGIKAR V P, LATTIN W, JACOBSEN R T. Nanometallic fuels for transportation: a welltowheels analysis \
[J\]. International Journal of Energy Research, 2007, 31(1): 99108.
[8] KLEINER K. The new iron age [J]. New Scientist, 2005, 188(2522): 3437.
[9] ZARZYCKI J, PRASSAS M, PHALIPPOU J. Synthesis of glasses from gels: the problem of monolithic gels [J]. Journal of Materials Scientist, 1982, 17(11): 33713379.
[10] 姜秀民,杨海平,刘辉,等.粉煤颗粒粒度对燃烧特性影响热分析[J].中国电机工程学报, 2002, 22(12): 142145.
JIANG Xiumin, YANG Haiping, LIU Hui, et al. Analysis of the effect of coal powder granularity on combustion characteristics by thermogravimetry [J]. Proceedings of the CSEE, 2002, 22(12): 142145.
[11] 姜秀民,李巨斌,邱建荣.超细化煤粉燃烧特性的研究[J].中国电机工程学报,2000, 20(6):7174.
JIANG Xiumin, LI Jubin, QIU Jianrong. Study on combustion characteristics of icropulverized coal [J]. Proceedings of the CSEE, 2000, 20(6): 7174.
[12] 聂其红,孙绍增,李争起. 煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1): 7276.
NIE Qihong, SUN Shaozeng, LI Zhengqi, et al. Thermogravimetric analysis on the combustion characteristics of brown coal blends [J]. Journal of Combustion Science and Technology, 2001, 7(1): 7276.
[13] 胡荣祖, 史启祯编. 热分析动力学[M]. 北京: 科学出版社, 2001.
[14] CUMMING J W. Reactivity of coals via a weighted mean Activationenergy [J]. Fuel, 1984, 63(10): 14361440.
[15] 徐朝芬,孙学信,郭欣. 热重分析试验中影响热重曲线的主要因素分析[J].热力发电, 2005(6):3436.
XU Chaofen, SUN Xuexin, GUO Xin, et al. Analysis of main factors affecting thermogravimetric curves in thermogravimetric test [J]. Thermal Power Generation, 2005(6):3436.

No related articles found!