Please wait a minute...
J4  2009, Vol. 43 Issue (12): 2259-2263    DOI: 10.3785/j.issn.1008-973X.2009.12.023
工业工程与制造业信息化     
基于频繁模式挖掘的实时供应链数据分析
田景红,潘晓弘,王正肖
(浙江大学 现代制造工程研究所,浙江省先进制造技术重点研究实验室,浙江 杭州 310027)
Data analysis in real-time supply chain based on frequent pattern mining
TIAN Jing-hong, PAN Xiao-hong, WANG Zheng-xiao
(Institute of Manufacturing Engineering, Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Zhejiang University, Hangzhou 310027,China)
 全文: PDF(1684 KB)   HTML
摘要:

为了从海量的供应链实时数据中发掘隐性的、重要的业务关系,将频繁模式挖掘(FPM)引入到供应链实时数据分析,有利于提高决策的科学性与效率.提出了实时供应链体系结构,包括数据采集层、实时数据处理层与实时供应链应用层,阐述了实时数据采集与处理、频繁路径选择及频繁模式挖掘的方法.详细论述了频繁路径选择、工作流立方建立及频繁模式挖掘3个阶段实时数据处理的内容、原理与方法.结合某服装供应链分销管理,应用DBMiner工具进行了实证研究,结果表明,应用FPM技术进行供应链实时数据分析,可以高效地挖掘与利用实时数据,提高供应链运作的效率与供应链决策水平.

Abstract:

In order to discover the hidden and important business relation, frequent pattern mining (FPM) was introduced into the field of real-time data analysis, which can improve the scientificity and efficiency of supply chain decision. The real-time supply chain framework was proposed, which include data capturing layer, real-time data processing layer, and real-time supply chain application layer. The methods of real-time data capturing and processing, frequent path selection, and frequent pattern mining were discussed. Real-time data processing content, principles and methods in frequent path selection, workflow cube and frequent pattern mining were expounded. A case study of distribution management in some clothes supply chain was conducted with DBMiner tools. Results show that FPM can efficiently mine and exploit real-time data and enhance the efficiency of supply chain operation and the level of supply chain decision.

出版日期: 2010-01-16
:  TP 278  
基金资助:

国家“863”高技术研究发展计划资助项目(2009AA04Z151), 浙江省科技计划资助项目(2006C11237).

通讯作者: 王正肖,男,副教授.     E-mail: wangzhengxiao@zju.edu.cn
作者简介: 田景红(1976-),男,重庆人,博士生,主要从事供应链管理、物流管理的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

田景红, 潘晓弘, 王正肖. 基于频繁模式挖掘的实时供应链数据分析[J]. J4, 2009, 43(12): 2259-2263.

TIAN Jing-Gong, BO Xiao-Hong, WANG Zheng-Xiao. Data analysis in real-time supply chain based on frequent pattern mining. J4, 2009, 43(12): 2259-2263.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.12.023        http://www.zjujournals.com/eng/CN/Y2009/V43/I12/2259


[1] TARANTILIS C D. Topics in real-time supply chain management
[J]. Computers & Operations Research, 2008, 35(11): 3393-3396.

[2] RABIN S. The real-time enterprise, the real-time supply chain
[J]. Information System Management, 2003(9),20(2):58-62.

[3] LANBERT D M, COOPER M C. Issues in supply chain management
[J]. Industrial Marketing Management, 2000, 29(1):65-83.

[4] RAJANISH DASS. An efficient algorithm for frequent pattern mining for real-time business intelligence analytics in dense datasets
[C]∥Proceedings of the 39 Annual Hawaii International Conference on System Sciences, HICSS’06.Kauai,HI,United States: Institute of Electrical and Electronics Engineers Computer Society,2006.

[5] DASS, RAJANISH, MAHANTI, et al. An efficient technique for frequent pattern mining in real-time business applications
[C]∥38th Annual Hawaii International Conference on System Sciences.Big lsland, Hl, United States: Institute of Electrical and Electronics Engineers Computer Society, 2005.

[6] HAN, JIAWEI, GONZALEZ, et al. Warehousing and mining massive RFID data sets
[C]∥2nd International Conference on Advanced Data Mining and Applications, ADMA 2006, Xian:Springer Verlag,2006.

[7] 岳昆, 李维华, 苏茜,等. XML查询中的频繁路径选择
[J]. 云南大学学报:自然科学版, 2007, 29(3): 241-246.
YUN Kun, LI Wei-hua, SU Qian, et al. Selecting frequent paths in XML queries
[J]. Journal of Yunnan University :Natural Sciences Edition, 2007, 29(3): 241-246.

[8] 林森媚, 谢伙生, 白清源, 等. 基于合并FP树的频繁模式挖掘算法
[J]. 广西师范大学学报:自然科学版. 2007, 25(4): 252-256.
LIN Sen-mei, XIE Huo-sheng, BAI Qing-yuan, et al. Algorithm for mining frequent patterns based on merged FP-tree
[J]. Journal of Guangxi Normal University :Natural Science Edition, 2007, 25(4): 252-256.

[9] TREBILCOCK, BOB. The real-time supply chain
[J]. Modern Materials Handling, 2003, 9 (58): 57-59.

[1] 刘爱军, 杨育, 李斐, 邢青松, 陆惠, 张煜东. 混沌模拟退火粒子群优化算法研究及应用[J]. J4, 2013, 47(10): 1722-1730.
[2] 徐姗姗, 董利达, 朱丹, 朱承丞. S4PR网的极小信标计算方法[J]. J4, 2013, 47(3): 431-441.
[3] 叶建芳, 潘晓弘, 王正肖, 等. 基于免疫离散粒子群算法的调度属性选择[J]. J4, 2009, 43(12): 2203-2207.