Please wait a minute...
J4  2009, Vol. 43 Issue (5): 968-972    DOI: 10.3785/j.issn.1008-973X.2009.05.035
材料与化学工程     
旋流喷嘴内部流场的数值模拟和实验研究
尹俊连1,焦磊1,仇性启2,王乐勤1
(1.浙江大学 化工机械研究所,浙江 杭州 310027; 2.中国石油大学 机电工程学院,山东 东营 257061)
Numerical and experimental investigation of flow in swirling nozzle
YIN Jun-lian1, JIAO Lei1, QIU Xing-qi2, WANG Le-qin1
(1. Institute of Chemical Machinery, Zhejiang University, Hangzhou 310027, China;
2. College of Electromechanical Engineering, China University of Petroleum, Dongying 257061, China)
 全文: PDF(1146 KB)   HTML
摘要:

为了揭示旋流喷嘴内部流动机理,有效预测其外部雾化特性,采用VOF多相流模型和RNG κ-ε湍流模型对旋流喷嘴内部的气液两相流动进行了数值模拟.通过对喷嘴结构进行合理的网格划分和特殊边界条件设置,计算了喷嘴内部的速度场、压力场和空气芯的形状尺寸.分别通过激光测速仪和高速摄像仪测量出口速度、空气芯的直径和雾化半锥角,对计算结果进行了验证.结果表明,旋流喷嘴内部流动为Rankine涡结构,其雾化特性如雾化角和液膜厚度等可以通过分析出口处流场得到.

Abstract:

The gas-liquid two-phase flow in  swirling nozzle was simulated using the VOF (volume of fluid) model and the RNG κ-ε turbulence model in order to investigate the flow mechanism and predict the atomization characteristics efficiently. Through the proper partition of mesh generated for the nozzle structure and the special setting of boundary condition, the velocity field, the pressure field and the dimensions of  air core were calculated. Experiments using laser Doppler velocimetry (LDV) and high-speed-photographic camera were carried out to validate the computed values of the velocity at the exit and the dimensions of air core. The simulation results agreed well with the experiment data, including the axial velocity, the spray cone angle and the thickness of the liquid film at the exit. The results show that the internal flow structure in the nozzle is Rankie vortex and the outside atomization characteristics such as the spray cone angle and the thickness of the liquid film can be obtained by analyzing the flow field at the exit.

出版日期: 2009-11-18
:  TK263.4  
基金资助:

浙江省自然科学基金资助项目(Y107467).

通讯作者: 焦磊,男,副教授.     E-mail: hj_wlq4@zju.edu.cn
作者简介: 尹俊连(1984-),男,山东禹城人,博士生,从事流体机械的流场优化研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

尹俊连, 焦磊, 仇性启, 等. 旋流喷嘴内部流场的数值模拟和实验研究[J]. J4, 2009, 43(5): 968-972.

YIN Dun-Lian, JIAO Lei, CHOU Xing-Qi, et al. Numerical and experimental investigation of flow in swirling nozzle. J4, 2009, 43(5): 968-972.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.05.035        http://www.zjujournals.com/eng/CN/Y2009/V43/I5/968

[1] 冉景煜,张力,辛明道,等. 渐扩切向槽式低压旋流喷嘴流场的数值模拟[J]. 工程热物理学报, 2002, 23(4): 586588.
RAN Jing-yu, ZHANG Li, XIN Ming-dao, et al. Numerical study on flow characteristics about rotary atomized nozzle with micro expanded tangent channel at low pressure [J]. Journal of Engineering Thermophysics, 2002, 23(4): 586588.
[2] 岳明,徐行,杨茂林. 离心式喷嘴内气液两相流动的数值模拟[J]. 工程热物理学报, 2003, 24(5): 888890.
YUE Ming, XU Hang, YANG Mao-lin. Numerical study of two-phase flow in atomizer [J]. Journal of Engineering Thermophysics, 2003, 24(5): 888890.
[3] HIRT C W, NICHOLS B D. Volume of fluid(VOF)method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201225.
[4] 王国辉,蔡体敏,何国强,等. 一种旋流式喷嘴的实验和数值研究[J]. 推进技术, 2003, 24(1): 2833.
WANG Guo-hui, CAI Ti-min, HE Guo-qiang, et al. Experimental and numerical investigation of a swirl atomizer [J]. Journal of Propulsion Technology, 2003, 24(1): 2833.
[5] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence. I. Basic theory \
[J\]. Journal of Scientific Computing, 1986, 1(1): 351.
[6] 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京:清华大学出版社, 2004: 200201.
[7] NARASIMHA M, BRENNAN M, HOLTHAM P N. Large eddy simulation of hydrocyclone—prediction of air-core diameter and shape [J]. International Journal of Mineral Processing, 2006, 80(1): 114.
[8] 姚增权,马进. 简式旋流喷嘴的设计[J].电力环境保护, 2002, 18(3): 17.
YAO Zeng-quan, MA Jin. Design of simplex swirl jet [J]. Electric Power Environmental Protection, 2002, 18(3): 17.

No related articles found!