Please wait a minute...
J4  2009, Vol. 43 Issue (7): 1312-1315    DOI: 10.3785/j.issn.1008-973X.2009.
材料与化学工程     
脱脂棉纤维增强壳聚糖棒材
王征科,胡巧玲,吕佳,王幽香,沈家骢
(浙江大学 教育部高分子合成与功能构造重点实验室,浙江 杭州310027)
Chitosan rod reinforced with absorbent cotton fibers
WANG Zheng-ke, HU Qiao-ling, LV Jia, WANG You-xiang, SHEN Jia-cong
(Key laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(1132 KB)   HTML
摘要:

以三氟乙酸在无水条件下溶解脱脂棉纤维,在壳聚糖的醋酸溶液中析出.脱脂棉纤维均匀稳定地分散在粘稠的壳聚糖溶液中,采用原位沉析法制备得到脱脂棉纤维增强的具有层状叠加结构的壳聚糖棒材.经力学性能测试表明,当脱脂棉的质量分数为02%时,复合棒材的弯曲强度达1368 MPa,与纯壳聚糖棒材相比提高了48%.SEM表明,脱脂棉纤维与壳聚糖基体界面结合性能好,复合棒材在受到外力作用时,壳聚糖基体传递应力,而脱脂棉纤维可以有效承担外界应力的作用,从而使得微量的脱脂棉纤维有效地提高了壳聚糖棒材的弯曲强度,该材料有望用于临床骨折内固定.

Abstract:

Absorbent cotton fibers were dissolved in trifluoroacetic acid (TFA), and then precipitated in the chitosan solution. Cotton fibers were equably stably suspended in the viscous chitosan solution. Cotton fiber/chitosan composite rods with layer-by-layer structure were constructed via in-situ precipitation. Mechanical property tests showed that the bending strength of cotton fiber/chitosan composite rod reached 1368 MPa, which was increased by 48%, compared with the pure chitosan rod, when the content percentage of absorbent cotton in the composites was 02%. Scanning electron microscope (SEM) indicated that the interface between the cotton fiber and chitosan matrix was well connected. Chitosan was the continuous phase that could transfer stress, whereas cotton fiber could endure outside stress effectively. Thus, chitosan rod could be reinforced by a small amount of cotton fibers to suit internal fixation of bone fracture.

出版日期: 2009-07-01
:  O636.1  
基金资助:

国家自然科学基金资助项目(50333020, 50773070);国家“973”重点基础研究发展规划资助项目(2005CB623902);浙江省重大科技专项资助项目(2008C11087);浙江省科技计划资助项目(2006C33067).

通讯作者: 胡巧玲,女,教授.     E-mail: huql@zju.edu.cn
作者简介: 王征科(1981-),男,江苏淮安人,博士,博士后,从事生物医用高分子材料的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王征科, 胡巧玲, 吕佳, 等. 脱脂棉纤维增强壳聚糖棒材[J]. J4, 2009, 43(7): 1312-1315.

WANG Zheng-Ke, HU Qiao-Ling, LV Jia, et al. Chitosan rod reinforced with absorbent cotton fibers. J4, 2009, 43(7): 1312-1315.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/eng/CN/Y2009/V43/I7/1312

[1] 胡巧玲,钱秀珍,李保强,等.原位沉析法制备壳聚糖棒材的研究 [J].高等学校化学学报, 2003, 24(3): 528531.
HU Qiao-ling, QIAN Xiu-zhen, LI Bao-qiang, et al. Studies on chitosan rods prepared by in situ precipitation method [J]. Chemical Journal of Chinese Universities, 2003, 24(3): 528531.
[2] KUMAR M. A review of chitin and chitosan applications [J]. Reactive and Functional Polymers, 2000, 46 (1): 127.
[3] KHOR E, LIM LY. Implantable applications of chitin and chitosan [J]. Biomaterials, 2003, 24(13): 23392349.
[4] HUDA MS, DRZAL LT, MISRA M, et al. A study on biocomposites from recycled newspaper fiber and poly(lactic acid) [J]. Industrial and Engineering Chemistry Research, 2005, 44(15): 55935601.
[5] NISHINO T, MATSUDA I, HIRAO K. All-cellulose composite [J]. Macromolecules, 2004, 37(20): 76837687.
[6] BHARDWAJ R, MOHANTY AK, DRZAL LT, et al. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic [J]. Biomacromolecules, 2006, 7(6): 20442051.
[7] HU Q L, LI B Q, WANG M, et al. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization∶a potential material as internal fixation of bone fracture[J]. Biomaterials, 2004, 25: 779785.
[8] FAVIER V, CHANZY H, CAVAILLE JY. Polymer nanocomposites reinforced by cellulose whiskers [J].Macromolecules, 1995, 28(18): 63656367.
[9] 王征科, 吴海若, 胡巧玲, 等. 梯度渗透法组装仿木年轮结构壳聚糖棒材[J]. 浙江大学学报:工学版, 2006, 40(11): 18691872.
WANG Zheng-ke, WU Hai-ruo, HU Qiao-ling, et al. Chitosan rods with annual ring structure prepared via grade-pervasion precipitation[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(11): 18691872.

No related articles found!