[1] CRISFIELD M A, MOITA G F. A co-rotational formulation for 2-D continua including incompatible modes [J]. International Journal for Numerical Methods in Engineering, 1996, 39(15): 2619-2633.
[2] LIU W K, GUO Y, TANG S, et al. A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 154(1): 69-132.
[3] IZZUDDIN B A. An enhanced co-rotational approach for large displacement analysis of plates [J]. International Journal for Numerical Methods in Engineering, 2005, 64(10): 1350-1374.
[4] KIM K D, LOMBOY G R. A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44-47): 6502-6522.
[5] STOLARSKI H, BELYTSCHKO T, LEE S H. Review of shell finite elements and corotational theories [J]. Computational Mechanics Advances, 1995, 2(2): 125-212.
[6] YANG H T Y, SAIGAL S, MASUD A, et al. A survey of recent shell finite elements [J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3): 101-127.
[7] FELIPPA C A, HAUGEN B. A unified formulation of small-strain corotational finite elements: I. Theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21-24): 2285-2335.
[8] DE SOUSA R J A, CARDOSO R P R, VALENTE R A F, et al. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness — Part II: Nonlinear applications [J]. International Journal for Numerical Methods in Engineering, 2006, 67(2): 160-188.
[9] BRUNET M, SABOURIN F. Analysis of a rotation-free 4-node shell element [J]. International Journal for Numerical Methods in Engineering, 2006, 66(9): 1483-1510.
[10] LI Z X. A co-rotational formulation for 3D beam element using vectorial rotational variables [J]. Computational Mechanics, 2007, 39(3): 309-322.
[11] LI Z X. A mixed co-rotational formulation of 2D beam element using vectorial rotational variables [J]. Communications in Numerical Methods in Engineering, 2007, 23(1): 45-69.
[12] LI Z X, VU-QUOC L. An efficient co-rotational formulation for curved triangular shell element [J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1029-1062.
[13] LI Z X, IZZUDDIN B A, VU-QUOC L. A 9-node co-rotational quadrilateral shell element [J]. Computational Mechanics, 2008, 42(6): 873-884.
[14] 李忠学. 有限元分析中梁板壳单元的各种闭锁现象及解决方法[J]. 浙江大学学报:工学版, 2007, 41(7): 1119-1125.
LI Zhong-xue. Strategies for overcoming locking phenomena in beam and shell finite element formulations [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(7): 1119-1125.
[15] BLETZINGER K U, BISCHOFF M, RAMM E. A unified approach for shear-locking-free triangular and rectangular shell finite elements [J]. Computers & Structures, 2000, 75(3): 321-334.
[16] KOSCHNICK F, BISCHOFF M, CAMPRUBI N, et al. The discrete strain gap method and membrane locking [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21-24): 2444-2463.
[17] MOITA G F, CRISFIELD M A. A finite element formulation for 3-D continua using the co-rotational technique [J]. International Journal for Numerical Methods in Engineering, 1996, 39(22): 3775-3792.
[18] GRUTTMANN F, WAGNER W. A linear quadrilateral shell element with fast stiffness computation [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4279-4300.
[19] SIMO J C, FOX D D, RIFAI M S. On stress resultant geometrically exact shell model. Part II: The linear theory|computational aspects [J]. Computer Methods in Applied Mechanics and Engineering, 1989, 73(1): 53-92.
[20] OLIVER J, ONATE E. A total Lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part 1. Two-dimensional problems: shell and plate structures [J]. International Journal for Numerical Methods in Engineering, 1984, 20(12): 2253-2281.
[21] CAMPELLO E M B, PIMENTA P M, WRIGGERS P. A triangular finite shell element based on a fully nonlinear shell formulation [J]. Computational Mechanics, 2003, 31(6): 505-518.
[22] JIANG L, CHERNUKA M W. A simple four-noded corotational shell element for arbitrarily large rotations [J]. Computers & Structures, 1994, 53(5): 1123-1132.
[23] BATTINI J M. A modified corotational framework for triangular shell elements [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(13-16): 1905-1914. |