Please wait a minute...
J4  2009, Vol. 43 Issue (8): 1448-1453    DOI: 10.3785/j.issn.1008-973X.2009.
动力与电气工程     
35K两级高频脉管制冷研究:Ⅰ.理论分析
甘智华,范炳燕,徐娜娜,曹强,李卓裴,邱利民
(浙江大学 制冷与低温研究所, 浙江 杭州 310027)
Study on high frequency two-stage pulse tube refrigeration at 35 K:
Part Ⅰ. Theoretical analysis
 GAN Zhi-Hua, FAN Bing-Yan, XU Na-Na, CAO Qiang, LI Zhuo-pei, QIU Li-min
 全文: PDF(804 KB)   HTML
摘要:

针对空间35K温区探测器的冷却需要,基于回热器数值计算软件REGEN3.2,成功设计了一台两级高频脉管制冷机.该制冷机采用热耦合的级间布置和惯性管调相方式,其中第二级脉管热端的惯性管和气库置于第一级脉管的冷头下,即冷惯性管,较好地解决了第二级脉管内小声功流条件下相位调节的难题.给出了第二级脉管制冷机的详细设计方法,讨论了第二级回热器填料、长度、充气压力对脉管制冷机性能的影响.计算表明,在80~35K,40Hz下,采用500目不锈钢丝网作为回热器时的制冷性能优于铅丸回热材料,充气压力在1.25MPa下可以获得较好的制冷性能.

Abstract:

For the requirements of detectors cooling at 35 K in space application, a two-stage Stirling-type pulse tube cryocooler (PTC) was successfully designed based on the regenerator simulation software known as REGEN3.2.  The two-stage Stirling-type PTC was thermally coupled and an inertance tube was used as phase shifter in the system. In order to obtain a relative large phase at low acoustic power for the second stage of this system, a cold inertance tube and the reservoir at the second stage of the hot end of pulse tube, which was precooled by the cold end of the first stage pulse tube, was introduced in this system. This work presented the detail design information and discussed the effects of regenerator material, regenerator length and charging pressure on the performance of the second stage of the cryocooler. The calculation results showed that 500 mesh stainless steel is the best regenerator material and its coefficient of performance (COP) is much higher than that of the lead sphere at 80~35 K and 40 Hz. The charging pressure of 1.25 MPa is suggested for the experiment system.

出版日期: 2009-09-28
:  TB 651  
基金资助:

国家自然科学基金资助项目(50676081)

通讯作者: 邱利民,男,教授,博导.     E-mail: Limin.qiu@zju.edu.cn
作者简介: 甘智华(1973-),男,福建龙海人,副教授,从事深低温气体制冷机研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

甘智华,范炳燕,徐娜娜,等. 35K两级高频脉管制冷研究:Ⅰ.理论分析[J]. J4, 2009, 43(8): 1448-1453.

GAN Zhi-Hua, FAN Bing-Yan, XU Na-Na, et al. Study on high frequency two-stage pulse tube refrigeration at 35 K:
Part Ⅰ. Theoretical analysis. J4, 2009, 43(8): 1448-1453.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/eng/CN/Y2009/V43/I8/1448

[1] GULLY W, GLAISTER D S, HENDERSHOTT P, et al. Ball aerospace next generation two-stage 35K coolers: the SB235 and SB235E [C]∥ Cryocoolers 14. Boulder: ICC Press, 2007: 49-55.
[2] NAST T C, OLSON J, EVTIMOV B, et al. Development of a two-stage pulse tube cryocooler for 35K cooling [C]∥ Cryocoolers 12. New York: Kluwer Academic/ Plenum Publishers, 2003: 213-218.
[3] MARQUARDT E D, GULLY W J, GLAISTER D S, et al. Ball aerospace next generation 2-stage 35K SB235 coolers [C]∥ Cryocoolers 13. New York: Springer, 2005: 65-70.
[4] BRUNINGHAUS C H Y, TOMLINSON B J, ABHYANKAR N. Performance characterization of the ball aerospace 35/60K protoflight spacecraft cryocooler [C]∥ Cryocoolers 12. New York: Kluwer Academic/ Plenum Publishers, 2003: 51-58.
[5] CHAN C K, NGUYEN T, JACO C, et al. High capacity two-stage pulse tube cooler [C]∥ Cryocoolers 12. New York: Kluwer Academic/Plenum Publishers, 2003: 219-224.
[6] OLSON J R, KOTSUBO V, CHAMPAGNE P J, et al. Performance of a two-stage pulse tube cryocooler for space application [C]∥ Cryocoolers 10. New York: Kluwer Academic/Plenum Publishers, 1999: 163170.
[7] GAN Z H, LIU G J, WU Y Z, et al. Study on a 50W/80K single stage Stirling type pulse tube cryocooler [J]. Journal of Zhejiang University: Science A, 2008, 9(9): 1277-1282.
[8] CAO Q, GAN Z H, LIU G J, et al. Theoretical and experiment study on a pulse tube cryocooler driven with a linear compressor [C]∥ Cryocooler 15. Boulder: ICC Press, 2009: 149-156.
[9] YANG L W, THUMMES G. High frequency two-stage pulse tube cryocooler with base temperature below 20K [J]. Cryogenics, 2005, 45(2): 155-159.
[10] TANG K, CHEN G B, THUMMES G. 13K thermal coupled two-stage Stirling type pulse tube refrigerator [J]. Chinese Science Bulletin, 2005, 50(18):2046-2048.
[11] YAN P D, CHEN G B, DONG J J, et al. 15K two-stage Stirling-type pulse-tube cryocooler [J]. Cryogenics, 2009, 49(2): 103-106.
[12] OLSON J R, MATEO S. Cold inertance tube for multi-stage pulse tube cryocooler:  US6983610B1 [P]. 2006-01-10.
[13] GARY J, RADEBAUGH R. An improved model for the calculation of regenerator performance (REGEN3.1) [C]∥ Proceedings of the Fourth Interagency Meeting on Cryocoolers. Bethesda: David Taylor Research Center, 1991: 165-176.
[14] RADEBAUGH R, LEWIS M, LUO E, et al. Inertance tube optimization for pulse tube refrigerators [C]∥ Advances in Cryogenic Engineering. New York: AIP, 2006, 51: 59-67.
[15] KANAO K, WATANABE N, KANAZAWA Y. A miniature pulse tube refrigerator for temperature below 100K [J]. Cryogenics, 1994, 34(Suppl.): 167-170.
[16] 甘智华,李卓裴,陈杰,等.带预冷的4 K斯特林型脉管制冷机设计[J].工程热物理学报, 2009, 30(3): 378-380.
GAN Zhi-hua, LI Zhuo-pei, CHEN Jie, et al. Design of 4 K Stirling type pulse tube cryocooler with precooling [J]. Journal of Engineering Thermophysics, 2009, 30(3): 378-380.

[1] 甘智华,吴英哲,袁园,邱利民,张学军,张小斌,徐旭. 120 Hz单级脉管制冷机理论与实验[J]. J4, 2011, 45(11): 2014-2019.
[2] 甘智华,范炳燕,陈杰,等. 35K两级高频脉管制冷研究:Ⅱ.实验验证[J]. J4, 2009, 43(8): 1454-1457.
[3] 李卓裴,邱利民,刘国军,等. 热声发动机驱动的脉管制冷机模拟及实验研究[J]. J4, 2009, 43(8): 1458-1462.