Please wait a minute...
J4
力学     
模拟颗粒布朗运动的格子Boltzmann模型
聂德明1,2,林建忠1,2
(1.浙江大学 力学系,浙江 杭州 310027; 2.中国计量学院,计量测试工程学院,浙江 杭州 310018)
Lattice Boltzmann model for particle Brownian motion
 NIE De-Meng1,2, LIN Jian-Zhong1,2
1. Department of Mechanics, Zhejiang University, Hangzhou 310027, China;
2. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
 全文: PDF(590 KB)   HTML
摘要:

通过在格子Boltzmann方法的迭代格式中附加描述分子热运动涨落的分布函数,建立了描述颗粒布朗运动的涨落格子Boltzmann模型,给出了分布函数满足的条件以及在D2Q9格子模型下的具体表达形式.通过ChapmanEnskog展开推导,得到了考虑分子热运动涨落的宏观流体动力学方程.在此基础上,对单颗粒在流场中的布朗运动进行了数值模拟,得到了颗粒运动的均方速度及速度、角速度时间自相关函数.结果表明,均方速度满足能量均分定理,说明颗粒最终达到热平衡;颗粒速度、角速度时间自相关函数符合理论预测的t-1、t-2衰减规律.数值结果证明了所建立模型的正确性,为采用格子Boltzmann方法模拟颗粒的布朗运动提供了有效的方法.

Abstract:

A fluctuating lattice Boltzmann model for particle Brownian motion was established by incorporating a stochastic term into the lattice Boltzmann equation, which represents the thermally-induced fluctuations in the stress tensor. The conditions for the stochastic term were derived and the expressions of the stochastic term for the D2Q9 lattice model were also presented. The fluctuating hydrodynamic equations were derived from the lattice Boltzmann equation through Chapman-Enskog expansion. The Brownian motion of a single circular particle was numerically investigated by the newly developed lattice Boltzmann model. Numerical results including particle mean-square velocity, velocity autocorrelation function and angular velocity autocorrelation function were presented. The energy equipartition theorem was reproduced by the results of mean-square velocity, which indicated that the particle was in thermal equilibrium. The results showed that the velocity autocorrelation function and the angular velocity autocorrelation function decayed as a power law of t-1 and t-2 respectively, as theoretically stated. Numerical results showed the accuracy and robustness of the present model, which was proved to be an effective numerical method for the particle Brownian motion.

出版日期: 2009-09-28
:  O 359  
基金资助:

国家自然科学基金重点资助项目(2005CCA06900)

通讯作者: 林建忠,男,教授.     E-mail: jzlin@sfp.zju.edu.cn
作者简介: 聂德明(1979-),男,福建三明人,博士,从事多相流体力学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

聂德明,林建忠. 模拟颗粒布朗运动的格子Boltzmann模型[J]. J4, 10.3785/j.issn.1008-973X.2009..

NIE De-Meng, LIN Jian-Zhong. Lattice Boltzmann model for particle Brownian motion. J4, 10.3785/j.issn.1008-973X.2009..

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/eng/CN/Y2009/V43/I8/1438

[1] 宣益民,李强,姚正平. 纳米流体的格子Boltzmann模拟[J]. 中国科学(E辑:技术科学), 2004, 34(3): 280-287.
XUAN Yi-min, LI Qiang, YAO Zheng-ping. Numerical simulation of nano-fluids using lattice Boltzmann method [J]. Science in China Series (E: Technological Sciences), 2004, 34(3): 280-287.
[2] BRADY J F, BOSSIS G. Stokesian dynamics [J]. Annual Review of Fluid Mechanics, 1988, 20: 111-157.
[3] BRADY J F, BOSSIS G. Self-diffusion of Brownian particles in concentrated suspensions under shear [J]. Journal of Chemical Physics, 1987, 87(9): 5437-5448.
[4] FOSS D R, BRADY J F. Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation [J]. Journal of Fluid Mechanics, 2000, 407: 167-200.
[5] ERMAK D L, MCCAMMON J A. Brownian dynamics with hydrodynamic interactions [J]. Journal of Chemical Physics, 1978, 69(4): 1352-1360.
[6] LANDAU L D, LIFSHITZ E M. Fluid mechanics [M]. London: Pergamon Press, 1959.
[7] HAUGE E H, MARTIN-LOF A. Fluctuating hydrodynamics and Brownian motion [J]. Journal of Statistical Physics, 1973, 7(3): 259-281.
[8] SHARMA N, PATANKAR N A. Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations [J]. Journal of Computational Physics, 2004, 201(2): 466-486.
[9] CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364.
[10] LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1: Theoretical foundation [J]. Journal of Fluid Mechanics, 1994, 271: 285309.
[11] 郭照立,郑楚光,李青,等. 流体动力学的格子Boltzmann方法[M]. 武汉:湖北科学技术出版社, 2002: 49-50.
[12] AIDUN C K, LU Y, DING E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation [J]. Journal of Fluid Mechanics, 1998, 373: 287-311.
[13] 熊吟涛. 统计物理学[M]. 北京:人民教育出版社, 1981

[1] 计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772.
[2] 杜军,魏正英,熊孝东,何威,唐一平. 纳米压印模具及膜厚对抗蚀剂填充特性的影响[J]. J4, 2012, 46(7): 1175-1181.
[3] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法的软性磨粒两相流场特性分析[J]. J4, 2011, 45(12): 2222-2228.