Please wait a minute...
浙江大学学报(工学版)
通信工程、自动化技术     
骨干粒子群算法两种不同实现的优化特性
张震, 潘再平, 潘晓弘
浙江大学 工学部, 浙江 杭州 310027
Different implementations of bare bones particle swarm optimization
ZHANG Zhen, PAN Zai-ping, PAN Xiao-hong
Faculty of Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(959 KB)   HTML
摘要:

总结了骨干粒子群算法(BBPSO)的一般形式, 指出决定BBPSO算法本质的4个要素. BBPSO在实施中, 粒子不同维度采用的随机变量值相同或不同, 这将导致算法的特性及适合的优化对象不同. 记相同的为I型实现, 不同的为II型实现, 通过实验指出2种实现的差别:I型实现有各向同性的优点, 但是粒子多样性差;II型粒子多样性更优, 但各向异性, 使用高斯、柯西、指数和均匀分布形式的II型BBPSO都倾向于沿坐标轴寻解. 从理论上分析了这些差别的成因, 指出I型实现总体性能较差, 只适合优化梯度变化明显的单峰函数; II型实现总体性能较好, 擅长求解峰的方向平行于坐标轴的单峰或多峰函数.

Abstract:

A general bare bones particle swarm optimization (BBPSO) form was presented, which consists of four key elements. In the implementation of BBPSO, whether the different dimensions of a particle use the same random variable or not conduct to two different algorithms. Denote the former as BBPSO-I, and the latter as BBPSO-II. Experimental results indicate that BBPSO-I is a rotational invariant algorithm with poor swarm diversity, while BBPSO-II is rotational variant with better swarm diversity and general performance. The using of Gaussian, Cauchy, Exponential or Uniform distribution makes particles of BBPSO-II tend to move along the axes. These features were clarified by theoretical analysis. Some advice on the application of BBPSO was given. BBPSO-I is suitable for unimodal functions with obvious gradient descent, while BBPSO-II obtains generally better performance, especially on optimizing functions with peaks along axes.

出版日期: 2015-09-10
:  TP 301  
通讯作者: 潘再平, 男, 教授     E-mail: panzaiping@zju.edu.cn
作者简介: 张震(1986-), 男, 博士, 从事算法分析、变压器设计的研究. E-mail: colabh@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张震, 潘再平, 潘晓弘. 骨干粒子群算法两种不同实现的优化特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.07.021.

ZHANG Zhen, PAN Zai-ping, PAN Xiao-hong. Different implementations of bare bones particle swarm optimization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.07.021.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.07.021        http://www.zjujournals.com/eng/CN/Y2015/V49/I7/1350

[1] KENNEDY J. Bare bones particle swarms [C]∥ Proceedings of the Swarm Intelligence Symposium. Indiana: IEEE,2003: 80-87.
[2] SUN J, XU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization [C]∥ Conference on Cybernetics and Intelligent Systems. Singapore: IEEE, 2004: 111-116.
[3] SUN J, FANG W, WU X, et al. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection [J]. Evolutionary Computation, 2012, 20(3): 349-393.
[4] FANG W, SUN J, DING Y, et al. A review of quantum-behaved particle swarm optimization [J]. IETE Technical Review, 2010, 27(4): 336-348.
[5] ZHANG H, FERNNDEZ-VARGAS J A, RANGAIAH G P, et al. Evaluation of integrated differential evolution and unified bare-bones particle swarm optimization for phase equilibrium and stability problems [J]. Fluid Phase Equilibria, 2011, 310(1): 129-141.
[6] YAO J, HAN D. Improved barebones particle swarm optimization with neighborhood search and its application on ship design [J]. Mathematical Problems in Engineering, 2013, 2013(1): 113.
[7] RICHER T J, BLACKWELL T. The Lévy particle swarm [C]∥ IEEE Congress on Evolutionary Computation. Vancouver: IEEE, 2006: 808-815.
[8] AL-RIFAIE M M, BLACKWELL T. Bare bones particle swarms with jumps [C]∥Algorithmic Number Theory Symposium.Brussels:Springer, 2012: 49-60.
[9] BLACKWELL T. A study of collapse in bare bones particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 354-372.
[10] HSIEH H, LEE T. A modified algorithm of bare bones particle swarm optimization [J]. International Journal of Computer Science Issues, 2010, 7(6): 12-17.
[11] LI Y, XIANG R, JIAO L, et al. An improved cooperative quantum-behaved particle swarm optimization [J]. Soft Computing, 2012, 16(6): 1061-1069.
[12] ZHANG Y, GONG D, SUN X, et al. Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis [J]. Soft Computing, 2013, 18(7): 116.
[13] ZHANG Y, GONG D, GENG N, et al. Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects [J]. Applied Soft Computing, 2014, 5(18): 248-260.
[14] 史丽萍,王攀攀,胡泳军,等. 基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J]. 电工技术学报, 2014, 29(1): 147-155.
SHI Li-ping, WANG Pan-pan, HU Yong-jun, et al. Broken rotor bar fault diagnosis of induction motors based on bare-bone particle swarm optimization [J]. Transactions of China Electricotechnical Society, 2014, 29(1): 147-155.
[15] CAMPOS M, KROHLING R A. Hierarchical bare bones particle swarm for solving constrained optimization problems [C]∥ IEEE Congress on Evolutionary Computation. Cancun: IEEE, 2013: 805-812.
[16] CHANG Y, CHUEH C, XU Y, et al. Bare bones particle swarm optimization with considering more local best particles [C]∥ International Symposium on Instrumentation and Measurement, Sensor Network and Automation. Toronto : IEEE, 2013: 1105-1108.
[17] SPEARS W M, GREEN D T, SPEARS D F. Biases in particle swarm optimization [J]. International Journal of Swarm Intelligence Research, 2010, 1(2): 34-57.
[18] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.

[1] 毛宜钰, 刘建勋, 胡蓉, 唐明董. 基于Logistic函数和用户聚类的协同过滤算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1252-1258.
[2] 张丽娜, 余阳. 海量O2O服务组合的优化[J]. 浙江大学学报(工学版), 2017, 51(6): 1259-1268.
[3] 董立岩, 朱琪, 李永丽. 基于最大共识的模型组合算法[J]. 浙江大学学报(工学版), 2017, 51(2): 416-421.
[4] 张小骏, 刘志镜, 李杰. 基于图像处理思想的激波捕捉自适应网格方法[J]. 浙江大学学报(工学版), 2017, 51(1): 89-94.
[5] 易树平, 刘觅, 温沛涵. 面向智能车间的工艺规划辅助决策方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1911-1921.
[6] 过晓芳,王宇平,代才. 新的混合分解高维多目标进化算法[J]. 浙江大学学报(工学版), 2016, 50(7): 1313-1321.
[7] 苗峰,谢安桓,王富安,喻峰,周华. 多阶段可替换分组并行机调度问题的求解[J]. 浙江大学学报(工学版), 2015, 49(5): 866-872.
[8] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(12): 2115-2122.
[9] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(7): 2-.
[10] 斯袁杰,桂林,杨小虎. 模型验证中的公平性问题[J]. 浙江大学学报(工学版), 2014, 48(7): 1217-1225.
[11] 孔勇奇, 潘志庚. 基于抽风矢量场的深度凹陷图像分割算法[J]. 浙江大学学报(工学版), 2014, 48(6): 1024-1033.
[12] 倪广翼, 章孝灿, 苏程, 俞伟斌. 基于多染色体演化的自适应类别数聚类方法[J]. 浙江大学学报(工学版), 2014, 48(6): 980-986.
[13] 刘加海,杨茂林,雷航,廖勇. 共享资源约束下多核实时任务分配算法[J]. J4, 2014, 48(1): 113-117.
[14] 赵诗奎, 方水良, 顾新建. 柔性车间调度的新型初始机制遗传算法[J]. J4, 2013, 47(6): 1022-1030.
[15] 宋杰, 侯泓颖, 王智, 朱志良. 云计算环境下改进的能效度量模型[J]. J4, 2013, 47(1): 44-52.