Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (5): 660-666    DOI: 10.3785/j.issn.1008-9209.2020.10.202
Animal sciences & veterinary medicine     
Analysis of the characteristics of porcine antibody repertoire by high-throughput sequencing method
Chunmiao JI1,2(),Bin WANG1,Pan QIN1,Yaowei HUANG1()
1.Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
2.Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, Guangdong, China
Download: HTML   HTML (   PDF(1574KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The adaptive immune system can protect the body from various pathogens by producing a variety of antibodies. The antibody repertoire is so vast that the traditional low-throughput sequencing method cannot completely sequence it. In this study, the library of porcine B cell receptor (BCR) heavy chain was amplified from porcine peripheral blood mononuclear cell (PBMC) by multiplex polymerase chain reaction (PCR). The characteristics of porcine antibody repertoire were analyzed by next-generation sequencing. The results showed that several IGHV, IGHD and IGHJ genes were preferentially used by three-week-old piglets under normal conditions, and IGHV1-4 and IGHV1S2 were the two most frequently used variable (V) genes. The total frequencies of the use of eight IGHV genes accounted for more than 80%. In addition, the length of heavy chain complementarity determining region 3 (HCDR3) was a normal distribution with the average length of 15.8 amino acids. This study successfully constructs a high-throughput sequencing method suitable for porcine antibody repertoire, which provides an effective approach for further understanding the specific composition of it in physiological and pathological states.



Key wordspig      antibody repertoire      composition      high-throughput sequencing      method     
Received: 20 October 2020      Published: 27 October 2021
CLC:  S 855.3  
Corresponding Authors: Yaowei HUANG     E-mail: jichunmiaomiao@163.com;yhuang@zju.edu.cn
Cite this article:

Chunmiao JI,Bin WANG,Pan QIN,Yaowei HUANG. Analysis of the characteristics of porcine antibody repertoire by high-throughput sequencing method. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 660-666.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.10.202     OR     http://www.zjujournals.com/agr/Y2021/V47/I5/660


利用高通量测序技术分析猪抗体库的组成特征

宿主适应性免疫系统通过产生种类多样的抗体保护其免受病原侵害,而传统的低通量测序方法无法完成对宿主抗体库的测序。本研究通过多重聚合酶链反应(polymerase chain reaction, PCR)从猪外周血单个核细胞(peripheral blood mononuclear cell, PBMC)中扩增获得猪B细胞受体(B cell receptor, BCR)重链文库,经二代测序建立并分析健康猪抗体库的组成特征。结果表明:3周龄仔猪在正常情况下对抗体库IGHV、IGHD、IGHJ基因使用具有偏好性,其中IGHV1-4IGHV1S2是使用最频繁的2种V(variable)基因,有8种IGHV基因的使用频率之和超过80%,另外发现重链互补决定区3(heavy chain complementarity determining region 3, HCDR3)的长度呈正态分布,平均长度约为15.8个氨基酸。本研究成功建立了适用于猪抗体库的高通量测序方法,可为未来进一步深入理解不同状态(生理、病理)猪抗体库的特异性组成提供有效的研究方法。


关键词: 猪,  抗体库,  组成,  高通量测序,  方法 
Fig. 1 High-throughput sequencing method for the porcine antibody repertoireA. Flow chart of high-throughput sequencing of the porcine antibody repertoire; B. Scheme for multiplex PCR amplification of porcine BCR heavy chain library.

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

IGHV-FTGGAGGAGGCCTGGTGCAG
IGHC-R1GGCCAGAGGGTAGACCGAT
IGHC-R2AGTCAGTGGGAAGATTTTG
IGHC-R3GACGAGGGGGAAGAGACTC
IGHC-R4AGTCAAGGGGTAGACCAGT
IGHC-R5GACGAGGGGGAAGAGATTC
Table 1 Primers used for multiplex PCR amplification

序列

Sequence

猪#1

Pig#1

猪#2

Pig#2

猪#3

Pig#3

猪#4

Pig#4

总序列数 Total sequence number279 347155 902500 924292 488
免疫序列数 Immune sequence number246 576138 220411 257238 595
未知序列数 Unknown sequence number32 77117 68289 66753 893
阅读框内序列数 In-frame sequence number233 514131 122385 411216 470
阅读框外序列数 Out-of-frame sequence number12 1126 70522 51318 685
有效序列数 Productive sequence number224 548124 816367 246203 985
无效序列数 Non-productive sequence number22 02813 40444 01134 610
CDR3序列总数 Total CDR3 sequence number219 745122 375358 815196 537
Table 2 Summary of sequencing reads alignment
Fig. 2 Usage of IGHV gene in the porcine antibody repertoire
Fig. 3 Usage of IGHD gene in the porcine antibody repertoire
Fig. 4 Usage of IGHJ gene in the porcine antibody repertoire
Fig. 5 Distribution of HCDR3 with different lengths in four pigletsHCDR3: Heavy chain complementarity determining region 3.
[1]   XU J L, DAVIS M M. Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity, 2000,13(1):37-45. DOI:10.1016/S1074-7613(00)00006-6
doi: 10.1016/S1074-7613(00)00006-6
[2]   EGUCHI-OGAWA T, WERTZ N, SUN X Z, et al. Antibody repertoire development in fetal and neonatal piglets. Ⅺ. The relationship of variable heavy chain gene usage and the genomic organization of the variable heavy chain locus. Journal of Immunology, 2010,184(7):3734-3742. DOI:10.4049/jimmunol.0903616
doi: 10.4049/jimmunol.0903616
[3]   PAPAVASILIOU F N, SCHATZ D G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell, 2002,109(1):S35-S44. DOI:10.1016/s0092-8674(02)00706-7
doi: 10.1016/s0092-8674(02)00706-7
[4]   SUN J, HAYWARD C, SHINDE R, et al. Antibody repertoire development in fetal and neonatal piglets.Ⅰ. Four VH genes account for 80 percent of VH usage during 84 days of fetal life. The Journal of Immunology, 1998,161(9):5070-5078.
[5]   LEE J, BOUTZ D R, CHROMIKOVA V, et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016,22(12):1456-1464. DOI:10.1038/nm.4224
doi: 10.1038/nm.4224
[6]   PARAMESWARAN P, LIU Y, ROSKIN K M, et al. Convergent antibody signatures in human dengue. Cell Host and Microbe, 2013,13(6):691-700. DOI:10.1016/j.chom.2013.05.008
doi: 10.1016/j.chom.2013.05.008
[7]   JIANG N, HE J K, WEINSTEIN J A, et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Science Translational Medicine, 2013,5(171):171ra19. DOI:10.1126/scitranslmed.3004794
doi: 10.1126/scitranslmed.3004794
[8]   WU X L, ZHOU T Q, ZHU J, et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science, 2011,333(6049):1593-1602. DOI:10.1126/science.1207532
doi: 10.1126/science.1207532
[9]   CHOI N M, LOGUERCIO S, VERMA-GAUR J, et al. Deep sequencing of the murine IgH repertoire reveals complex regulation of nonrandom Ⅴ gene rearrangement frequencies. Journal of Immunology, 2013,191(5):2393-2402. DOI:10.4049/jimmunol.1301279
doi: 10.4049/jimmunol.1301279
[10]   LARIMORE K, MCCORMICK M W, ROBINS H S, et al. Shaping of human germline IgH repertoires revealed by deep sequencing. Journal of Immunology, 2012,189(6):3221-3230. DOI:10.4049/jimmunol.1201303
doi: 10.4049/jimmunol.1201303
[11]   WEINSTEIN J A, JIANG N, WHITE Ⅲ R A, et al. High-throughput sequencing of the zebrafish antibody repertoire. Science, 2009,324(5928):807-810. DOI:10.1126/science.1170020
doi: 10.1126/science.1170020
[12]   SUN J, KACSKOVICS I, BROWN W R, et al. Expressed swine VH genes belong to a small VH gene family homologous to human VHⅢ. Journal of Immunology, 1994,153(12):5618-5627.
[13]   BROCHET X, LEFRANC M P, GIUDICELLI V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Research, 2008,36:W503-W508. DOI:10.1093/nar/gkn316
doi: 10.1093/nar/gkn316
[14]   YE J, MA N, MADDEN T L, et al. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Research, 2013,41:W34-W40. DOI:10.1093/nar/gkt382
doi: 10.1093/nar/gkt382
[15]   KODANGATTIL S, HUARD C, ROSS C, et al. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing. mAbs, 2014,6(3):628-636. DOI:10.4161/mabs.28059
doi: 10.4161/mabs.28059
[16]   SCHROEDER H W. Similarity and divergence in the development and expression of the mouse and human antibody repertoires. Developmental and Comparative Immunology, 2006,30(1/2):119-135. DOI:10.1016/j.dci.2005.06.006
doi: 10.1016/j.dci.2005.06.006
[17]   ELHANATI Y, SETHNA Z, MARCOU Q, et al. Inferring processes underlying B-cell repertoire diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015,370(1676):20140243. DOI:10.1098/rstb.2014.0243
doi: 10.1098/rstb.2014.0243
[18]   BUTLER J E, WEBER P, SINKORA M, et al. Antibody repertoire development in fetal and neonatal piglets. Ⅱ. Characterization of heavy chain complementarity-determining region 3 diversity in the developing fetus. Journal of Immunology, 2000,165(12):6999-7010. DOI:10.4049/jimmunol.165.12.6999
doi: 10
[1] Zhen WEI,Ke HE,Shenghui HONG,Diwen LIU. Polymorphism and differential expression of MHCclassgenes between different strains of guinea pig[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 534-542.
[2] Li NAN,Ye’e HUANG,Chenwen XIAO,Zhipeng WANG,Qiang WEI,Quan’an JI,Ke LI,Yan LIU,Guolian BAO. Preparation of outer membrane vesicles from rabbit Bordetella bronchiseptica and their protein composition analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 251-260.
[3] Xinxin YOU,Sheng WANG,Linna DU. Characteristics of an endogenous compound microbial inoculant and its immobilization effect on wastewater treatment from pig feedlots[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 98-106.
[4] Qianqian YANG,Jianguo CAI,An WANG,Yanwei LIU. Growth and aluminum absorption responses of Hydrangea macrophylla to combined treatments of acid rain and aluminum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 718-726.
[5] Guoqiang DUN,Zhiyong GAO,Yanling GUO,Yuxuan LIU,Ning MAO,Wenyi JI. Simulation test and optimization for structural parameters of circular arc gear discharging fertilizer apparatus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 625-636.
[6] Wenxue HAN,Hao JIANG,Jian BIAN,Jinhu YUN,Yanyan SUN,Wangxiang ZHANG,Ye PENG. Leaf color change and its correlation with pigment content in 10 ornamental crabapple varieties in spring[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 562-570.
[7] Xuan CAO,Xiaodong ZHENG. Transcriptomic difference analysis of Meyerozyma guilliermondii in response to salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 400-406.
[8] Yiping LIU,Fangfang WU,Dan HE,Yuan ZHUANG,Dezheng KONG. Numerical classification of lotus cultivars based on flower color phenotype[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 319-326.
[9] Jun GUO,Liang QU,Taocun DOU,Manman SHEN,Yuping HU,Kehua WANG. Comparison of genetic parameter evaluation methods for body mass of the five-week-old layer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 746-750.
[10] Yueling ZHAO,Jian DING,Jia HE,Dedong KONG,Ping XU,Yuefei WANG. Protective effect of epigallocatechin gallate on inflammatory bowel disease induced by dextran sulfate sodium in mice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 626-634.
[11] Shengchun XU,Huazhang ZHENG,Zhijuan FENG,Na LIU,Guwen ZHANG,Qizan HU,Yaming GONG. Key construction strategies for core germplasm collection in vegetable pea (Pisum sativum)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 401-406.
[12] Chengqiang WANG,Baoshan LI,Jiying WANG,Bingshan HUANG,Tiantian HAO,Yongzhi SUN,Changxing MA,Ying ZHOU. Effects of dietary Bacillus subtilis and yeast culture on growth performance, body composition and farming water quality of juvenile hybrid grouper (Epinephelus fuscoguttatus ×Epinephelus lanceolatus ♂)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 490-499.
[13] Qingxia LIN,Lihui XIANG,Lili WANG,Junguo YANG,Zhenshuo SONG,Lin CHEN. Effect of withering temperature on water loss of fresh leaves and quality of white tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 434-442.
[14] Xufeng FEI,Zhouqiao REN,Zhaohan LOU,Rui XIAO,Xiaonan Lü. Prediction of soil heavy metal content under spatial scale based on Bayesian maximum entropy and auxiliary information[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 452-459.
[15] Haiying HU,Huixia LI,Biao NI,Bin SHI,Dongmei XU,Yingzhong XIE. Characteristic of typical vegetation community and water use efficiency of dominant plants in desert steppe of Ningxia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 460-471.