Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (2): 251-260    DOI: 10.3785/j.issn.1008-9209.2020.05.190
Animal sciences & veterinary medicine     
Preparation of outer membrane vesicles from rabbit Bordetella bronchiseptica and their protein composition analysis
Li NAN1(),Ye’e HUANG2,Chenwen XIAO2,Zhipeng WANG2,Qiang WEI2,Quan’an JI2,Ke LI2,Yan LIU2(),Guolian BAO2()
1.College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
2.Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Download: HTML   HTML (   PDF(1991KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study aimed to establish the optimal preparation method of outer membrane vesicles (OMVs) from rabbit Bordetella bronchiseptica (Bb). The FX-1 strain of rabbit Bb was used as the research object. Centrifugal ultrafiltration and ultrasonication were compared, and followed by the optimization of the preparation technics, such as culture time, antibiotic addition and filtering method. The physical and chemical properties of OMVs were examined with transmission electron microscope (TEM), scanning electron microscope (SEM) and nanoparticle tracking analysis (NTA), etc. The protein compositions were analysed with Bradford protein quantification, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that centrifugal ultrafiltration was a better preparation method of OMVs, and the optimum culture time, cefalexin concentration and filtering method were 18 h, 64 μg/mL and filtration though 0.45 μm membrane once, respectively. The OMVs showed a spherical shape with the diameter of 127.83 nm±0.68 nm, containing a range of proteins associated with virulence and infection mechanisms. This preparation technique could significantly promote the production of OMVs, which making industrial production possible. Furthermore, analysis of the protein composition lays a foundation for novel subunit vaccine research and development.



Key wordsbacterial outer membrane vesicles      Bordetella bronchiseptica      preparation technic      protein composition analysis     
Received: 19 May 2020      Published: 25 April 2021
CLC:  S 85  
Corresponding Authors: Yan LIU,Guolian BAO     E-mail: nanlio@163.com;35792191@qq.com;baoguolian@163.com
Cite this article:

Li NAN,Ye’e HUANG,Chenwen XIAO,Zhipeng WANG,Qiang WEI,Quan’an JI,Ke LI,Yan LIU,Guolian BAO. Preparation of outer membrane vesicles from rabbit Bordetella bronchiseptica and their protein composition analysis. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 251-260.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.05.190     OR     http://www.zjujournals.com/agr/Y2021/V47/I2/251


兔支气管败血波氏杆菌外膜囊泡的制备及其蛋白质成分分析

本研究旨在确立兔波氏杆菌外膜囊泡(outer membrane vesicles, OMVs)最佳制备工艺。以兔波氏杆菌毒力较强菌株FX-1为研究对象,筛选出制备OMVs的最优方法,并对培养时间、抗生素添加量及过滤方法进行逐一优化。采用透射电镜(transmission electron microscope, TEM)、扫描电镜(scanning electron microscope, SEM)、纳米颗粒追踪分析(nanoparticle tracking analysis, NTA)等方法分析OMVs的理化性质;采用考马斯亮蓝法(Bradford法)、十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)及液相色谱-串联质谱法(liquid chromatography-tandem mass spectrometry, LC-MS/MS)检测OMVs的蛋白质含量及组分。试验结果显示,超滤浓缩法是制备兔波氏杆菌OMVs的较适方法,采用该方法的最佳培养时间、头孢氨苄质量浓度和过滤方法分别为18 h、64 μg/mL和0.45 μm滤膜过滤一次。制得的OMVs呈纳米级球形囊泡,平均直径为127.83 nm±0.68 nm。蛋白质分析结果表明,OMVs上包含多种与兔波氏杆菌毒力和感染机制有关的蛋白质。该制备工艺能够显著提高兔波氏杆菌OMVs的产量,为其工业化生产提供了可能;对其结构和蛋白质成分的分析,为研发新型亚单位疫苗提供了科学依据。


关键词: 细菌外膜囊泡,  支气管败血波氏杆菌,  制备工艺,  蛋白质成分分析 
Fig. 1 Establishment of the optimum preparation technic of OMVsSingle asterisk (*) indicates significant differences at the 0.05 probability level; double asterisks (**) indicate highly significant differences at the 0.01 probability level.
Fig. 2 TEM, SEM images and NTA observation of OMVs prepared by centrifugal ultrafiltrationA. Transmission electron microscope (TEM) image of OMVs; B. Scanning electron microscope (SEM) image of OMVs.
Fig. 3 SDS-PAGE analysis of OMVs protein bands prepared by centrifugal ultrafiltration and ultrasonication1: Molecular marker; 2: Centrifugal ultrafiltration; 3: Ultrasonication.

登录号

Accession No.

肽段质谱

匹配总数

Number of PSMs

蛋白质名称

Protein name

分子质量

Molecular mass/kDa

理论等电点

Calculated isoelectric point

A0A0H3LWR4746丝状血凝素/黏附素 Filamentous hemagglutinin/adhesin372.38.06
A0A0C6NZD9634黏附素 Adhesin328.58.59
A0A5A4M9X1602丝状血凝素 Filamentous hemagglutinin328.28.59
A0A5A4MAC4602丝状血凝素 Filamentous hemagglutinin381.48.54
A0A0H3LLW0599黏附素 Adhesin328.48.54
A0A4U9R3V8577丝状血凝素 Filamentous hemagglutinin328.58.46
A0A3T0NYS5438丝状血凝素 Filamentous hemagglutinin385.48.66
A0A5A4MEU4192

β桶域的反向自主转运蛋白

Inverse autotransporter β-barrel domain-containing protein

164.55.74
A0A0R4J8N5188

假定外膜配体结合蛋白

Putative outer membrane ligand binding protein

164.65.71
A0A5A4M5C5137

β桶域的自主转运外膜蛋白

Autotransporter outer membrane β-barrel domain-containing

protein

54.37.69
A0A5A4MM068660 kDa伴侣蛋白 60 kDa chaperonin57.45.24
A0A088B3B082鞭毛蛋白(片段) Flagellin (fragment)36.14.68
A0A0H3LML578鞭毛钩相关蛋白2 Flagellar hook-associated protein 247.75.00
A0A5A4M89069鞭毛蛋白(片段) Flagellin (fragment)40.24.75
A0A4U9RWQ966侵袭素 Invasin102.09.67
A0A4U9RYS560侵袭素 Invasin195.75.41
A0A0H3LIE045自主转运蛋白 Autotransporter237.59.39
A0A4U9RS6043绒毛蛋白 Fluffing protein228.39.39
A0A0H3LQ5936

N-乙酰胞壁-L-丙氨酸酰胺酶

N-acetylmuramoyl-L-alanine amidase

45.58.88
A0A3T0P40135Toll-Pal系统蛋白 Tol-Pal system protein47.19.47
A0A0C6PAD9、A0A4U9S6B533

DNA导向RNA聚合酶亚单位

DNA-directed RNA polymerase subunit

156.26.83
A0A3T0NU0233

β桶域的自主转运外膜蛋白

Autotransporter outer membrane β-barrel domain-containing

protein

228.69.44
A0A0C6P9X8、A0A0H3LH4332

类枯草杆菌自主转运蛋白酶

Autotransporter subtilisin-like protease

99.49.63
A0A0H3LSC331二氢硫辛酸脱氢酶 Dihydrolipoyl dehydrogenase50.16.80
A0A0H3LU4930

2-氧戊二酸脱氢酶E1组分

2-oxoglutarate dehydrogenase E1 component

106.46.30
A0A0H3LXY6、A0A3T0P20628外膜蛋白A Outer membrane protein A21.08.73
A0A0C6P3B027溶血素激活蛋白 Hemolysin activator-like protein64.69.58
Q7WHP32430S核糖体蛋白S21 30S ribosomal protein S218.510.98
A0A0C6P01923周质硝酸盐还原酶 Periplasmic nitrate reductase92.98.12
A0A0H3LJ9422假定的TonB受体 Putative TonB-dependent receptor79.37.25
Table 1 Main proteins identified in OMVs from Bb prepared by centrifugal ultrafiltration
Fig. 4 Functional annotation and enrichment analysis of the proteins in the OMVs from Bb based ongene ontology (GO)A. Biological process; B. Molecular function; C. Cell component.
[1]   CHAMBERS J K, MATSUMOTO I, SHIBAHARA T, et al. An outbreak of fatal Bordetella bronchiseptica bronchopneumonia in puppies. Journal of Comparative Pathology, 2019,167:41-45. DOI:10.1016/j.jcpa.2018.12.002
doi: 10.1016/j.jcpa.2018.12.002
[2]   YACOUB A T, KATAYAMA M, TRAN J, et al. Bordetella Bronchiseptica in the immunosuppressed population: a case series and review. Mediterranean Journal of Hematology and Infectious Diseases, 2014,6(1):e2014031. DOI:10.4084/MJHID.2014.031
doi: 10.4084/MJHID.2014.031
[3]   ELLIS J A. How well do vaccines for Bordetella bronchiseptica work in dogs?A critical review of the literature1977—2014. The Veterinary Journal, 2015,204(1):5-16. DOI:10.1016/j.tvjl.2015.02.006
doi: 10.1016/j.tvjl.2015.02.006
[4]   ROIER S, ZINGL F G, CAKAR F, et al. Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications. Microbial Cell, 2016,3(6):257-259. DOI:10.15698/mic2016.06.508
doi: 10.15698/mic2016.06.508
[5]   ADRIANI R, MOUSAVI G S L, NAZARIAN S, et al. Immunogenicity of Vibrio cholerae outer membrane vesicles secreted at various environmental conditions. Vaccine, 2018,36(2):322-330. DOI:10.1016/j.vaccine.2017.09.00
doi: 10.1016/j.vaccine.2017.09.00
[6]   FERNANDEZ-ROJAS M A, VACA S, REYES-LOPEZ M, et al. Outer membrane vesicles of Pasteurella multocida contain virulence factors. Microbiology Open, 2014,3(5):711-717. DOI:10.1002/mbo3.201
doi: 10.1002/mbo3.201
[7]   BERLEMAN J E, ALLEN S, DANIELEWICZ M A, et al. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Frontiers in Microbiology, 2014,5:474. DOI:10.3389/fmicb.2014.00474
doi: 10.3389/fmicb.2014.00474
[8]   FLEETWOOD A J, LEE M K S, SINGLETON W, et al. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Frontiers in Celluar and Infection Microbiology, 2017,7:351. DOI:10.3389/fcimb.2017.00351
doi: 10.3389/fcimb.2017.00351
[9]   ZARIRI A, BESKERS J, DE WATERBEEMD B VAN, et al. Meningococcal outer membrane vesicle composition-dependent activation of the innate immune response. Infection and Immunity, 2016,84(10):3024-3033. DOI:10.1128/IAI.00635-16
doi: 10.1128/IAI.00635-16
[10]   CAI W, KESAVAN D K,WAN J, et al. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagnostic Pathology, 2018,13(1):95. DOI:10.1186/s13000-018-0768-y
doi: 10.1186/s13000-018-0768-y
[11]   LEITNER D R, LICHTENEGGER S, TEMEL P, et al. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Frontiers in Microbiology, 2015,6:823. DOI:10.3389/fmicb.2015.00823
doi: 10.3389/fmicb.2015.00823
[12]   ACEVEDO R, FERNáNDEZ S, ZAYAS C, et al. Bacterial outer membrane vesicles and vaccine applications. Frontiers in Immunology, 2014,5:121. DOI:10.3389/fimmu.2014.00121
doi: 10.3389/fimmu.2014.00121
[13]   ROSENTHAL J A, CHEN L, BAKER J L, et al. Pathogen like particles: biomimetic vaccine carriers engineered at the nanoscale. Current Opinion in Biotechnology, 2014,28(8):51-58. DOI:10.1016/j.copbio.2013.11.005
doi: 10.1016/j.copbio.2013.11.005
[14]   ROIER S, FENNINGER J C, LEITNER D R, et al. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles. International Journal of Medical Microbiology, 2013,303(5):247-256. DOI:10.1016/j.ijmm.2013.05.001
doi: 10.1016/j.ijmm.2013.05.001
[15]   ROIER S, LEITNER D R, IWASHKIW J, et al. Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS ONE, 2012,7(8):e42664. DOI:10.1371/journal.pone.0042664
doi: 10.1371/journal.pone.0042664
[16]   KLIMENTOVá J, STULíK J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiological Research, 2015,170:1-9. DOI:10.1016/j.micres.2014.09.006
doi: 10.1016/j.micres.2014.09.006
[17]   GERRITZEN M J H, STANGOWEZ L, DE WATERBEEMD B VAN, et al. Continuous production of Neisseria meningitidis outer membrane vesicles. Applied Microbiology Biotechnology, 2019,103(23/24):9401-9410. DOI:10.1007/s00253-019-10163-z
doi: 10.1007/s00253-019-10163-z
[18]   DEVIENNE K F, RADDI M S G. Screening for antimicrobial activity of natural products using a microplate photometer. Brazilian Journal of Microbiology, 2002,33(2):166-168. DOI:10.1590/S1517-83822002000200014
doi: 10.1590/S1517-83822002000200014
[19]   ALVES N J, TURNER K B, MEDINTZ I L, et al. Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Therapeutic Delivery, 2015,6(7):873-887. DOI:10.4155/tde.15.40
doi: 10.4155/tde.15.40
[20]   GU L, MENG R, TANG Y T, et al. Toll-like receptor 4 signaling licenses the cytosolic transport of lipopolysaccharide from bacterial outer membrane vesicles. Shock, 2019,51(2):256-265. DOI:10.1097/SHK.0000000000001129
doi: 10.1097/SHK.0000000000001129
[21]   FINGERMANN M, AVILA L, DE MARCO M B, et al. OMV-based vaccine formulations against Shiga toxin producing Escherichia coli strains are both protective in mice and immunogenic in calves. Human Vaccines and Immunotherapeutics, 2018,14(9):2208-2213. DOI:10.1080/21645515.2018.1490381
doi: 10.1080/21645515.2018.1490381
[22]   ORMAZáBAL M, BARTEL E, GAILLARD M E, et al. Characterization of the key antigenic components of pertussis vaccine based on outer membrane vesicles. Vaccine, 2014,32(46):6084-6090. DOI:10.1016/j.vaccine.2014.08.084
doi: 10.1016/j.vaccine.2014.08.084
[23]   KIM O Y, PARK H T, DINH N T H, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nature Communications, 2017,8(1):626. DOI:10.1038/s41467-017-00729-8
doi: 10.1038/s41467-017-00729-8
[24]   LIU J, HSIEH C L, GELINCIK O, et al. Proteomic characterization of outer membrane vesicles from gut mucosa-derived fusobacterium nucleatum. Journal of Proteomics, 2019,195:125-137. DOI:10.1016/j.jprot.2018.12.029
doi: 10.1016/j.jprot.2018.12.029
[25]   GUJRATI V, KIM S, KIM S H, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano, 2014,8(2):1525-1537. DOI:10.1021/nn405724x
doi: 10.1021/nn405724x
[26]   MATTOO S, CHERRY J D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clinical Microbiology Reviews, 2005,18(2):326-382. DOI:10.1128/CMR.18.2.326-382.2005
doi: 10.1128/CMR.18.2.326-382.2005
[27]   YOON H, ANSONG C, ADKINS J N, et al. Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages. Infection and Immunity, 2011,79(6):2182-2192. DOI:10.1128/CMR.18.2.326-382.2005
doi: 10.1128/CMR.18.2.326-382.2005
[28]   BOTTERO D, ZURITA M E, GAILLARD M E, et al. Membrane vesicles derived from Bordetella bronchiseptica: active constituent of a new vaccine against infections caused by this pathogen. Applied and Environmental Microbiology, 2018,84(4):e01877-17. DOI:10.1128/AEM.01877-17
doi: 10.1128/AEM.01877-17
[29]   LóPEZ-BOADO Y S, COBB L M, DEORA R. Bordetella bronchiseptica flagellin is a proinflammatory determinant for airway epithelial cells. Infection and Immunity, 2005,73(11):7525-7534. DOI:10.1128/IAI.73.11.7525-7534.2005
doi: 10.1128/IAI.73.11.7525-7534.2005
[30]   LIU Y, CHEN H, WEI Q, et al. Immune efficacy of five novel recombinant Bordetella bronchiseptica proteins. BMC Veterinary Research, 2015,11:173. DOI:10.1186/s12917-015-0488-4
doi: 10.1186/s12917-015-0488-4
[31]   ASENSIO C J, GAILLARD M E, MORENO G, et al. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine, 2011,29(8):1649-1656. DOI:10.1016/
j.vaccine.2010.12.068
doi: 10.1016/
[1] Gongga,Yifei WANG, Gesangzhuoma, Suolangsizhu, Nimayangzong, Labaciren. Identification of capsular serotype D Pasteurella multocida isolated from Tibetan swine and its biological characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 611-617.
[2] Yitian YING,Jing YANG,Bingxuan YAN,Fengjin SHAO,Xun TAN. Effect of mastitis on the function of milk-derived exosomes: observations from mammary epithelial cells[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 383-390.
[3] Ruowei GUAN,Jianxin LIU. Causes of susceptibility to diseases and early monitoring of common diseases in perinatal dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 519-525.
[4] Xia LI,Wenjun XIA,Sichao MAO,Shuting LU,Kaikun MO,Min LIAO,Jiyong ZHOU,Xiaojuan ZHENG. Isolation, identification and whole genome sequence analysis of serotype 4 fowl adenovirus Zhejiang strain[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 635-646.
[5] Miao MIAO,Caihuang XU,Zihui HUANG,Xiaodong ZHANG,Xing ZHANG,Yongping WU. Preliminary structural analysis of infectious bursal disease virus by cryo-electron microscopy[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 506-511.
[6] ZHANG Qiaoyan, SHAO Fengjin, YU Xiangqian, TAN Xun. Prokaryotic expression of extracellular domain of avian CD133 protein and preparation of polyclonal antibody against CD133[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 743-747.
[7] LI Yongxin, ZOU Yixuan, LIU Jianxin, LIU Hongyun. Progress on oxidative stress and natural phytogenic antioxidants in dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 549-554.
[8] SHAN Ying, LIU Ziqi, SHI Xingfen, LI Guowei, CHEN Cong, LUO Hao, LIU Yajie, FANG Weihuan, LI Xiaoliang. Molecular characteristic analysis of porcine epidemic diarrhea virus S gene in Zhejiang and surrounding areas[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 610-618.
[9] QIN Pan, WANG Jingwei, WANG Bin, LEI Ximei, LI Long, HUANG Yaowei. Epidemiological survey and analysis of mammalian orthoreovirus 3 in diarrheic pigs from five provinces of east China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 631-638.
[10] CUI Yuting, ZHANG Rui, CHEN Zhengli, LUO Qihui, ZHU Chunmei, SUN Fengjiao, CHEN Menglu. Expression of Bax, Bcl-2 and Caspase-3 in spontaneous mammary gland tumors of rats[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 119-126.
[11] Chen Shanshan, Luo Qihui, Zeng Wen, Cheng Anchun, Liu Wentao, Shi Liangqin, Chen Zhengli. Expression of Th1/Th2 cytokines in partial target organs of type 2 diabetes mellitus rhesus monkey[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 302-308.
[12] Ge Yansong, Cao Changyu, Wang Lili, Li Nan, Jiang Xiuqing, Li Jinlong*. Analysis of selenocysteine insertion sequence element, structures and functions and expression profiles of selenoprotein T  in chicken[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 9-15.
[13] ZHANG Shaozhi1,SHI Mingyao1,CHEN Guangming1,LYU Fang2,LU Yu2*. Study on  foam freeze drying in vaccine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 351-354.
[14] TANG Xiuying1, CHEN Zhengli1,2,3*, LUO Qihui2,3, ZHANG Xiaolong1. Effect of soy isoflavones on intraepithelial lymphocytes, goblet cells and long leptin receptor in intestinal of rats[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 343-350.