Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (2): 193-202    DOI: 10.3785/j.issn.1008-9209.2020.06.101
Food sciences     
Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method
Zhen WANG1(),Lei HE2,Yingping XIAO3,Xiandong LU2,Yanhong LIU2,Wen LU1,Shoufeng WANG4()
1.Greentown Agricultural Testing Technology Co. , Ltd. , Hangzhou 310052, China
2.Ningbo iGene Technology Co. , Ltd. , Ningbo 315000, Zhejiang, China
3.Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
4.Department of Basic Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(3496KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Rapid detection of Bacillus cereus in rice by loop-mediated isothermal amplification (LAMP) with microfluidic chip method was established. Based on the published B. cereus hblA gene sequence, primers were designed, and the fluorescent dye SYTO-9 was added to the reaction system, which allowed to be tested in real-time fluorescence reading performed by LAMP with microfluidic chip. The specificity was verified by 24 strains, and the sensitivity, limit of detection (LOD) and repeatability were tested by positive plasmid and positive strain of B. cereus, respectively. The results showed that two strains of B. cereus were positive and 22 strains of non-B. cereus were negative. The sensitivity for B. cereus was 170 CFU/mL for pure cultures in 35 min and 10 μL-1 for positive plasmids in 15 min. The sensitivity of this method was 10 times higher than that of the traditional method. The LOD for B. cereus inartificially contaminated rice was 570 CFU/g, and could be completed in 45 min. The detecting repeatability of the positive plasmid from B. cereus was good and its coefficient of variation (CV ) was 2.02%. It is indicated that LAMP with microfluidic chip method has high specificity, sensitivity and accuracy. It could be used for rapid detection of B. cereus in rice.



Key wordsmicrofluidic chip      loop-mediated isothermal amplification (LAMP)      Bacillus cereus      rice      detection     
Received: 10 June 2020      Published: 25 April 2021
CLC:  Q 78  
Corresponding Authors: Shoufeng WANG     E-mail: 705878750@ qq.com;sfwang@zju.edu.cn
Cite this article:

Zhen WANG,Lei HE,Yingping XIAO,Xiandong LU,Yanhong LIU,Wen LU,Shoufeng WANG. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 193-202.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.06.101     OR     http://www.zjujournals.com/agr/Y2021/V47/I2/193


微流控芯片恒温扩增技术快速检测米饭中的蜡样芽孢杆菌

为建立米饭中的蜡样芽孢杆菌微流控芯片恒温扩增快速检测方法,利用蜡样芽孢杆菌公开的hblA基因序列设计引物,加入荧光染料SYTO-9,采用微流控芯片通过环介导恒温扩增进行实时荧光读数,并通过24株菌株验证其特异性;分别用阳性质粒和阳性菌株测试其灵敏度、检出限和重复性。结果表明:2株蜡样芽孢杆菌呈阳性,22株非蜡样芽孢杆菌呈阴性;微流控芯片恒温扩增技术检测蜡样芽孢杆菌菌液的灵敏度为170 CFU/mL,检测时间在35 min内;使用合成的蜡样芽孢杆菌阳性质粒样品,其灵敏度为10 μL-1,检测时间在15 min内,比传统分离鉴定方法的灵敏度高10倍;人工污染米饭中蜡样芽孢杆菌的检出限为570 CFU/g,并可在45 min内完成结果判定;蜡样芽孢杆菌阳性质粒检测重复性好,其变异系数(coefficient of variation, CV)为2.02%。综上所述,微流控芯片恒温扩增快速检测方法特异性好、灵敏度高、结果准确,可用于米饭类食品中蜡样芽孢杆菌的快速检测。


关键词: 微流控芯片,  环介导恒温扩增,  蜡样芽孢杆菌,  米饭,  检测 

序号

No.

菌株名称

Strain name

菌株编号

Strain number

1蜡样芽孢杆菌 Bacillus cereusCMCC (B) 63301
2蜡样芽孢杆菌 Bacillus cereusLCLY 001
3苏云金芽孢杆菌 Bacillus thuringiensisATCC 10792
4蕈状芽孢杆菌 Bacillus mycoidesATCC 10206
5枯草芽孢杆菌 Bacillus subtilisCMCC (B) 63501
6

肺炎克雷伯氏菌

Klebsiella peneumoniae

ATCC 4352
7大肠埃希菌 Escherichia coliATCC 25922
8

肠出血性大肠埃希菌O157∶H7

Enterohemorrhagic Escherichia

coli (EHEC) O157∶H7

CICC 21530
9

鼠伤寒沙门菌

Salmonella typhimurium

CMCC (B) 50115
10阪崎肠杆菌 Enterobacter sakazakiiATCC 29544
11

副溶血性弧菌

Vibrio parahaemolyticus

ATCC 17802
12马红球菌 Rhodococcus equiATCC 6939
13

金黄色葡萄球菌

Staphylococcus aureus

ATCC 6538
14

表皮葡萄球菌

Staphylococcus epidermidis

CMCC (B) 26069
15粪肠球菌 Enterococcus faecalisATCC 29212
16

单核细胞增生李斯特氏菌

Listeria monocytogenes

ATCC 19115
17伊氏李斯特氏菌 Listeria ivanoviiATCC 19119
18福氏志贺氏菌 Shigella flexneriCMCC (B) 51572
19

乙型溶血性链球菌

β-hemolytic Streptococcus

CMCC (B) 32210
20

铜绿假单胞菌

Pseudomonas aeruginosa

ATCC 27853
21短小芽孢杆菌 Bacillus pumilusCMCC (B) 63202
22地衣芽孢杆菌 Bacillus licheniformisCMCC (B) 63519
23

解淀粉芽孢杆菌

Bacillus amyloliquefaciens

ATCC 23845
24巨大芽孢杆菌 Bacillus megatheriumATCC 35985
Table 1 Strains for experiment

目标基因

Target gene

引物名称

Primer name

序列(5′→3′)

Sequence (5′→3′)

hblAF3F: AGCAAGGGATAATTTAGGTAAG
B3R: TCAATATGCCCTAGAACGC
FIPF: AACTCCAACTACACGATTTAAGGTTCCTTTATTAGCAGAATTACGTCAG
BIPR: GAAATGCACAAGGCGCTTGAAGAATCTAAATCATGCCACTG
Table 2 Primer sequences
Fig. 1 Temperature optimization results of LAMP reaction
Fig. 2 Specific testing results of LAMP with microfluidic chip for B. cereusIn figure A, 1: Bacillus cereus [CMCC (B) 63301]; 2: Bacillus thuringiensis (ATCC 10792); 3: Bacillus mycoides (ATCC 10206); 4: Bacillus subtilis [CMCC (B) 63501]; 5: Klebsiella peneumoniae (ATCC 4352); 6: Escherichia coli (ATCC 25922); 7: Enterohemorrhagic Escherichia coli O157∶H7 (CICC 21530); 8: Negative control. In figure B, 1: Bacillus cereus [CMCC (B) 63301]; 2: Salmonella typhimurium [CMCC (B) 50115]; 3: Enterobacter sakazakii (ATCC 29544); 4: Rhodococcus equi (ATCC 6939); 5: Vibrio parahaemolyticus (ATCC 17802); 6: Staphylococcus aureus (ATCC 6538); 7: Staphylococcus epidermidis [CMCC (B) 26069]; 8: Negative control. In figure C, 1: Bacillus cereus (LCLY 001); 2: Enterococcus faecalis (ATCC 29212); 3: Listeria monocytogenes (ATCC 19115); 4: Listeria ivanovii (ATCC 19119); 5: Pseudomonas aeruginosa (ATCC 27853); 6: Shigella flexneri [CMCC (B) 51572]; 7: β-hemolytic Streptococcus [CMCC (B) 32210]; 8: Negative control. In figure D, 1: Bacillus cereus [CMCC (B) 63301]; 2: Bacillus pumilus [CMCC (B) 63202]; 3: Bacillus licheniformis [CMCC (B) 63519]; 4: Bacillus amyloliquefaciens (ATCC 23845); 5: Bacillus megatherium (ATCC 35985); 6-8: Negative controls.
Fig. 3 Sensitivity testing results of LAMP with microfluidic chip for B. cereus1-5: The culture concentrations were 1.7×105, 1.7×104, 1.7×103, 1.7×102, 1.7×101 CFU/mL, respectively; 6: Negative control.
Fig. 4 Sensitivity testing results of LAMP with microfluidic chip for pUC57-hblA1: Negative control; 2-8: Plasmid concentrations were 1×100, 1×101, 1×102, 1×103, 1×104, 1×105, 1×106 μL-1, respectively.
Fig. 5 Repeatability testing results of LAMP with microfluidic chip for pUC57-hblA1-8: Results of eight repeated tests of 1×104 μL-1 plasmid.

检测次数

Number of detection

CT
112.473 73
212.771 98
312.566 29
412.826 23
513.053 71
613.118 82
712.529 07
813.165 19
平均值 Average12.813 13
标准差 Standard deviation0.258 348
CV/%2.016 274
Table 3 Analysis of the coefficient of variation on the detection of B. cereus by LAMP with microfluidic chip
Fig. 6 Limit of detection of B.cereus in artificially polluted rice by LAMP with microfluidic chip1-7: The culture concentrations of B. cereus in rice samples were 5.7×106, 5.7×105, 5.7×104, 5.7×103, 5.7×102, 5.7×101, 5.7×100 CFU/mL, respectively; 8: Negative control.
Fig. 7 Microfluidic chip
[1]   施春雷.食源性致病微生物研究的新动态.食品安全质量检测学报,2019,10(18):5981-5982. DOI:10.19812/j.cnki.jfsq11-5956/ts.2019.18.001
SHI C L. Research trends on foodborne pathogens. Journal of Food Safety and Quality, 2019,10(18):5981-5982. (in Chinese)
doi: 10.19812/j.cnki.jfsq11-5956/ts.2019.18.001
[2]   毛雪丹,胡俊峰,刘秀梅.2003—2007年中国106 0起细菌性食源性疾病流行病学特征分析.中国食品卫生杂志,2010,22(3):224-228.
MAO X D, HU J F, LIU X M. Epidemiological characteristics of bacterial foodborne disease during the year 2003—2007 in China. Chinese Journal of Food Hygiene, 2010,22(3):224-228. (in Chinese with English abstract)
[3]   陆湘华,崔昌,王远萍,等.蜡样芽孢杆菌食物中毒的研究进展.传染病信息,2015,28(4):251-254. DOI:10.3969/j.issn.1007-8134.2015.04.017
LU X H, CUI C, WANG Y P, et al. Research progress of Bacillus cereus foodborne diseases. Infectious Disease Infor-mation, 2015,28(4):251-254. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-8134.2015.04.017
[4]   中华人民共和国卫生部.食品微生物学检验 蜡样芽孢杆菌检验:GB4789.14—2014.北京:中国标准出版社,2014.
Ministry of Health of the People’s Republic of China. Microbiological Examination of Food Hygiene: Examination of Bacillus cereus: GB4789.14—2014. Beijing:China Standard Press, 2014. (in Chinese)
[5]   王振国,刘金华,徐宝梁,等.应用实时荧光PCR检测致病性蜡样芽孢杆菌.生物技术通讯,2006,17(1):40-42.
WANG Z G, LIU J H, XU B L, et al. Development of a SYBR Green Ⅰ real-time PCR assay for detection of morbific Bacillus cereus strains. Letters in Biotechnology, 2006,17(1):40-42. (in Chinese with English abstract)
[6]   黄晶菁,罗静,何宏轩,等.蜡样芽孢杆菌检测方法研究进展.中国畜牧兽医,2018,45(3):635-642. DOI:10.16431/j.cnki.1671-7236.2018.03.010
HUANG J J, LUO J, HE H X, et al. Research progress on detection methods for Bacillus cereus. China Animal Husbandry and Veterinary Medicine, 2018,45(3):635-642. (in Chinese with English abstract)
doi: 10.16431/j.cnki.1671-7236.2018.03.010
[7]   邓雪蕾,张苑怡,袁浩钧,等.液滴数字聚合酶链式反应芯片及其在致病菌检测中的应用.分析测试学报,2017,36(10):1191-1196. DOI:10.3969/j.issn.1004-4957.2017.10.004
DENG X L, ZHANG Y Y, YUAN H J, et al. Fabrication of a droplet digital PCR chip and its application in pathogenic bacteria detection. Journal of Instrumental Analysis, 2017,36(10):1191-1196. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-4957.2017.10.004
[8]   CHELLIAH R, WEI S, PARK B J, et al. Novel motB as a potential predictive tool for identification of B. cereus, B.thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Microbial Pathogenesis, 2017,111:22-27. DOI:10.1016/j.micpath.2017.07.050
doi: 10.1016/j.micpath.2017.07.050
[9]   PORCELLATO D, NARVHUS J, SKEIE S B. Detection and quantification of Bacillus cereus group in milk by droplet digital PCR. Journal of Microbiological Methods, 2016,127:1-6. DOI:10.1016/j.mimet.2016.05.012
doi: 10.1016/j.mimet.2016.05.012
[10]   贾雅菁,付博宇,王羽,等.实时荧光环介导等温扩增技术检测牛乳中的蜡样芽孢杆菌.食品科学,2016,37(6):184-189. DOI:10.7506/spkx1002-6630-201606033
JIA Y J, FU B Y, WANG Y, et al. Detection of Bacillus cereus in milk by real-time fluorescence loop-mediated isothermal amplification method. Food Science, 2016,37(6):184-189. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201606033
[11]   徐淑菲,孔繁德,苗丽,等.LAMP技术研究进展及其在动物疫病检测中的应用.中国动物检疫,2017,34(1):75-80. DOI:10.3969/j.issn.1005-944X.2017.01.022
XU S F, KONG F D, MIAO L, et al. Research progress of LAMP technology and its application in animal diseases detection. China Journal of Animal Quarantine, 2017,34(1):75-80. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-944X.2017.01.022
[12]   王振国,刘和平,刘金华,等.应用PCR方法检测蜡样芽孢杆菌的研究.吉林农业大学学报,2006,28(6):671-673.
WANG Z G, LIU H P, LIU J H, et al. Identification of Bacillus cereus by gyrase B gene with PCR method. Journal of Jilin Agricultural University, 2006,28(6):671-673. (in Chinese with English abstract)
[13]   郑光辉,马瑞敏,李方强,等.微流控芯片技术在神经外科术后细菌感染快速诊断中的应用.临床检验杂志,2019,37(4):246-250. DOI:10.13602/j.cnki.jcls.2019.04.02
ZHENG G H, MA R M, LI F Q, et al. Application of a microfluidic chip platform in rapid diagnosis of post-neurosurgical bacterial infection. Chinese Journal of Clinical Laboratory Science, 2019,37(4):246-250. (in Chinese with English abstract)
doi: 10.13602/j.cnki.jcls.2019.04.02
[14]   GIUFFRIDA M C, SPOTO G. Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosensors and Bioelectronics, 2016,90:174-186. DOI:10.1016/j.bios.2016.11.045
doi: 10.1016/j.bios.2016.11.045
[15]   何祥鹏,邹秉杰,齐谢敏,等.基于核酸等温扩增的病原微生物微流控检测技术.遗传,2019,41(7):611-624. DOI:10.16288/j.yczz.19-051
HE X P, ZOU B J, QI X M, et al. Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection. Hereditas (Beijing), 2019,41(7):611-624. (in Chinese with English abstract)
doi: 10.16288/j.yczz.19-051
[16]   M?NTYNEN V, LINDSTR?M K. A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Applied and Environmental Microbiology, 1998,64(5):1634-1639.
[17]   马新秀,胡文忠,冯可,等.生物芯片在微生物检测中的应用.食品与发酵工业,2018,44(2):273-277. DOI:10.13995/j.cnki.11-1802/ts.015826
MA X X, HU W Z, FENG K, et al. Applications of biochip in microbiological detection. Food and Fermentation Industries,2018,44(2):273-277. (in Chinese with English abstract)
doi: 10.13995/j.cnki.11-1802/ts.015826
[18]   周新丽,申炳阳,高丽娟,等.用于五种动物源性成分快速检测的离心式微流控芯片系统研制.食品与发酵工业,2020,46(3):229-234. DOI:10.13995/j.cnki.11-1802/ts.021457
ZHOU X L, SHEN B Y, GAO L J, et al. Development of centrifugal microfluidic chip system for rapid detection of five animal-derived components. Food and Fermentation Industries, 2020,46(3):229-234. (in Chinese with English abstract)
doi: 10.13995/j.cnki.11-1802/ts.021457
[19]   黄火清,郁昂.环介导等温扩增技术的研究进展.生物技术,2012,22(3):90-94. DOI:10.3969/j.issn.1004-311X.2012.03.76
HUANG H Q, YU A. Advances of loop-mediated isothermal amplification. Biotechnology, 2012,22(3):90-94. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-311X.2012.03.76
[20]   李玉锋,李帅,黄丽娟,等.LAMP技术在食品致病菌检测中的研究进展.西华大学学报,2011,30(1):16-l8. DOI:10.3969/j.issn.1673-159X.2011.01.005
LI Y F, LI S, HUANG L J, et al. Advance of the research on testing of pathogenic microbe in food by LAMP technology. Journal of Xihua University, 2011,30(1):16-l8. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-159X.2011.01.005
[21]   ELZBIETA O W, PIOTR W. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples. Journal of Microbiological Methods, 2013,95:295-301. DOI:10.1016/j.mimet.2013.09.012
doi: 10.1016/j.mimet.2013.09.012
[22]   杨健,侯婷婷,佐兆杭,等.牛乳中蜡样芽孢杆菌荧光定量PCR检测方法的建立及验证.中国生物制品学杂志,2019(3):324-327, 332. DOI:10.13200/j.cnki.cjb.002520
YANG J, HOU T T, ZUO Z H, et al. Establishment and verification of fluorescence quantitative PCR assay for Bacillus cereus in milk. Chinese Journal of Bilogicals, 2019(3):324-327, 332. (in Chinese with English abstract)
doi: 10.13200/j.cnki.cjb.002520
[23]   MARTíNEZ-BLANCH J F, SáNCHEZ G, GARAY E, et al. Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. International Journal of Food Microbiology, 2009,135(1):15-21. DOI:10.1016/j.ijfoodmicro.2009.07.013
doi: 10.1016/j.ijfoodmicro.2009.07.013
[24]   闻子钰,梁昊,顾一心,等.细菌核酸提取方法对荧光定量PCR检测差异分析.中国病原生物学杂志,2019(6):621-624. DOI:10.13350/j.cjpb.190601
WEN Z Y, LIANG H, GU Y X, et al. Comparison of methods of DNA extraction for real time PCR analysis. Journal of Pathogen Biology, 2019(6):621-624. (in Chinese with English abstract)
doi: 10.13350/j.cjpb.190601
[25]   陈秀琴,黄梅清,郑敏,等.食源性致病菌快速检测技术及其应用研究进展.福建农业学报,2018,33(4):438-446. DOI:10.19303/j.issn.1008-0384.2018.04.019
CHEN X Q, HUANG M Q, ZHENG M, et al. Advances on rapid detection of foodborne pathogens and the application. Fujian Journal of Agricultural Sciences, 2018,33(4):438-446. (in Chinese with English abstract)
doi: 10.19303/j.issn.1008-0384.2018.04.019
[26]   WEHRLE E, DIDIER A, MORAVEK M, et al. Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR green Ⅰ. Molecular and Cellular Probes, 2010,24:124-130. DOI:10.1016/j.mcp.2009.11.004
doi: 10.1016/j.mcp.2009.11.004
[27]   MONIS P T, GIGLIO S, SAINT C P. Comparison of SYTO9 and SYBR Green Ⅰ for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Analytical Biochemistry, 2005,340(1):24-34. DOI:10.1016/j.ab.2005.01.046
doi: 10.1016/j.ab.2005.01.046
[28]   王倩,闫雯,沈明辉.荧光染料SYTO13用于高分辨熔解曲线技术SNP基因分型的评价.中华检验医学杂志,2017,40(2):88-94. DOI:10.3760/cma.j.issn.1009-9158.2017.02.004
WANG Q, YAN W, SHEN M H, et al. Evaluation of SYTO13 as fluorescent dye for high resolution melting based single nucleotide polymorphism genotyping. Chinese Journal of Laboratory Medicine, 2017,40(2):88-94. (in Chinese with English abstract)
doi: 10.3760/cma.j.issn.1009-9158.2017.02.004
[29]   刘芳,罗臻,黄静敏,等.致病性蜡样芽孢杆菌的研究进展.检验检疫学刊,2016,26(1):68-71.
LIU F,LUO Z,HUANG J M, et al. Research progress of pathogenic Bacillus Cereus. Journal of Inspection and Quarantine, 2016,26(1):68-71. (in Chinese with English abstract)
[1] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[2] Jing CHEN,Hongyan HE,Changsheng LIU. Bioactive modification of microfluidic chip surface for detecting recombinant human bone morphogenetic protein-2[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 391-399.
[3] Zongyong SHI,Ziyan CHEN,Chen QI,Cheng WANG,Mengxiao ZHAO,Xiaying LI,Wenbin WANG,Jianqin YUAN,Dongmei XU,Yonggang QIAO,Jiandong LIU,Xiujie ZHANG,Jianhua GAO. Construction and application of a novel multiple target plasmid used for identification of 18 genetically modified soybean transformants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 280-290.
[4] Xinxia WANG,Jifeng WANG,Qiong HOU,Xiaojun WANG,Wuzhong NI. Effects of different fertilizing models on growth of single crop rice and nitrogen and phosphorus runoff losses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 225-233.
[5] Yan HUAI,Zhaoming CHEN,Gengmiao ZHANG,Mingbei JIANG,Jianfeng XU,Qiang WANG. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 217-224.
[6] Dongdong CAO,Wei WU,Shanyu CHEN,Yebo QIN,Guanhai RUAN,Min LU,Peili QIAN,Yutao HUANG. Seed vigor testing by low temperature germination in early rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 657-666.
[7] Fuyin HOU,Yingjiang CHEN,Zhiqing YANG,Chongfu JIN,Kai SHI,Changkuan CHEN,Gongneng FENG,Hongshan LI. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 325-331.
[8] Ang WANG,Danchao DAI,Xuzhou MA,Qun MOU,Yongqing YU,Weiqun Lü. Effects of rice-crab culture on nitrogen leaching in rice fields in the north of China.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 332-342.
[9] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[10] Jiangsheng GUI,Zixian WU,Kai LI. Hyperspectral imaging for early detection of soybean mosaic disease based on convolutional neural network model[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 256-262.
[11] Xu WEN,Xuzhou MA,Wei FAN,Xingxing LI,Yingliang ZHONG. Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 85-94.
[12] Meng ZHANG,Guanghui LI. Detection method of slight bruises of apples based on hyperspectral imaging and RELIEF-extreme learning machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 126-134.
[13] . Rice cropping information extraction mapping based on sample knowledge mining using high resolution remote sensing images[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 765-774.
[14] LIU Yufei, HE Yong, NOGUCHI Noboru. Development of a collision avoidance system for agricultural airboat based on laser sensor[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 431-439.
[15] DONG Qiuhuang, CHENG Qiansheng, QIU Rongbin, YE Dapeng. Analysis of sawing strategy and sawing angle for log automatic sawing and angle regulation machine based on infrared detection[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 459-464.