Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (2): 268-274    DOI: 10.3785/j.issn.1008-9209.2020.06.232
动物科学与动物医学     
基于微卫星标记和线粒体DNA监测浙江浆蜂(平湖)的遗传多样性变化
曹联飞1(),林瑞平2,姜全清3,符林杰3
1.浙江省农业科学院畜牧兽医研究所,杭州 310021
2.平湖市畜牧兽医站(动物疫病预防控制中心),浙江 嘉兴 314200
3.平湖市全清养蜂科技研究所,浙江 嘉兴 314200
Monitoring on genetic diversity of Zhejiang Royal Jelly bee (Pinghu) using microsatellite loci and mitochondrial DNA
Lianfei CAO1(),Ruiping LIN2,Quanqing JIANG3,Linjie FU3
1.Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
2.Animal Husbandry and Veterinary Station of Pinghu (Animal Disease Prevention and Control Center), Jiaxing 314200, Zhejiang, China
3.Quanqing Institute of Beekeeping Technology of Pinghu City, Jiaxing 314200, Zhejiang, China
 全文: PDF(1107 KB)   HTML
摘要:

利用5个微卫星位点和2段线粒体DNA序列,对2012、2015、2019年浙江省嘉兴市平湖地区的浙江浆蜂群体进行遗传多样性分析,从而为浙江浆蜂的资源保护提供科学依据。微卫星分析结果表明:浙江浆蜂(平湖)全群的平均观察等位基因数(Na)和平均有效等位基因数(Ne)分别为10.6个和3.859 1个,平均观察杂合度(Ho)和平均期望杂合度(He)分别为0.567 4和0.685 8,平均多态信息含量(PIC)为0.653 1,说明浙江浆蜂(平湖)的遗传多样性较丰富;不同年份浙江浆蜂(平湖)群体间的遗传多样性指标差异均不显著,说明浙江浆蜂(平湖)的遗传多样性较稳定。线粒体DNA分析结果显示,浙江浆蜂(平湖)群体的线粒体单倍型单一化更加明显。结合未来浙江浆蜂(平湖)群体数量可能大量减少的情况,建议加大对浙江浆蜂(平湖)的保护力度,加强对浙江浆蜂(平湖)资源变化的监测,以便及时采取必要的保护措施。

关键词: 浙江浆蜂微卫星标记线粒体DNA遗传多样性    
Abstract:

The trend of genetic diversity of Zhejiang Royal Jelly bee (Pinghu) among 2012, 2015 and 2019 years was analyzed using five microsatellite loci and two mitochondrial DNA sequences, which could provide scientific basis for the resource conservation of Zhejiang Royal Jelly bee. The results based on microsatellite loci showed that the mean observed allele number (Na) and mean effective allele number (Ne) were 10.6 and 3.859 1, respectively; and the mean observed heterozygosity (Ho) and mean effective heterozygosity(He) were 0.567 4 and 0.685 8, respectively; the mean polymorphism information content(PIC)was 0.653 1 in the overall Zhejiang Royal Jelly bee (Pinghu) population. The results indicated high genetic diversity in Zhejiang Royal Jelly bee (Pinghu). There were no significant differences in all genetic diversity indicators among 2012, 2015 and 2019 years, indicating that the genetic diversity of Zhejiang Royal Jelly bee (Pinghu) was stable. The results based on mitochondrial DNA showed that the main haplotype was more and more prevalent in Zhejiang Royal Jelly bee (Pinghu). In view of the fact that the population number of Zhejiang Royal Jelly bee (Pinghu) may decrease substantially in the future, it is suggested to strengthen the protection of Zhejiang Royal Jelly bee (Pinghu) and the monitoring of the resources in order to take necessary protective measures.

Key words: Zhejiang Royal Jelly bee    microsatellite locus    mitochondrial DNA    genetic diversity
收稿日期: 2020-06-23 出版日期: 2021-04-25
CLC:  S 893.2  
基金资助: 浙江省农业(畜禽)新品种选育重大科技专项(2016C02054-11);国家自然科学基金青年科学基金(31602014)
通讯作者: 曹联飞     E-mail: beekeepingcao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹联飞
林瑞平
姜全清
符林杰

引用本文:

曹联飞,林瑞平,姜全清,符林杰. 基于微卫星标记和线粒体DNA监测浙江浆蜂(平湖)的遗传多样性变化[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 268-274.

Lianfei CAO,Ruiping LIN,Quanqing JIANG,Linjie FU. Monitoring on genetic diversity of Zhejiang Royal Jelly bee (Pinghu) using microsatellite loci and mitochondrial DNA. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 268-274.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.06.232        http://www.zjujournals.com/agr/CN/Y2021/V47/I2/268

微卫星位点

Microsatellite locus

引物序列(5′→3′)

Primer sequence (5′→3′)

片段长度

Product size/bp

退火温度

Annealing temperature/℃

镁离子浓度

Concentration of

Mg2+/(mmol/L)

A14

F: GTGTCGCAATCGACGTAACC

R: GTCGATTACCGATCGTGACG

216~234581.7
A88

F: CGAATTAACCGATTTGTCG

R: GATCGCAATTATTGAAGGAG

136~150551.5
A107

F: CCGT GGGAGGT TTATTGTCG

R: CCTTCGTAACGGATGACACC

149~178561.5
Ad3

F: CCGTAACTGGACTTCTTTCCCTCC

R: GACAATGGCGTACTTTGTGG

149~176561.5
B124

F: GCAACAGGTCGGGTTAGAG

R: CAGGATAGGGTAGGTAAGCAG

215~238551.5
表1  微卫星位点的引物信息及反应条件

微卫星位点

Microsatellite locus

样本数

Sample size

观察等位基因数

Na

有效等位基因数

Ne

观察杂合度

Ho

期望杂合度

He

多态信息含量

PIC

平均 Mean89.210.63.859 10.567 40.685 80.653 1
A149083.056 60.633 30.676 60.624 3
A888951.653 80.382 00.397 60.370 7
A10790145.912 40.877 80.835 50.812 6
Ad387155.375 70.310 30.818 70.794 3
B12490113.296 70.633 30.700 60.663 5
表2  基于微卫星位点浙江浆蜂(平湖)全群的遗传多样性检测结果

微卫星位点

Microsatellite

locus

优势等位基因长度

Length of

predominant allele/bp

等位基因频率

Allele frequency/%

201220152019
A1421648.3340.0053.33
A8814885.0068.3375.86
A10717231.6726.6731.67
Ad316739.6624.1437.93
B12421540.0055.0051.67
表3  不同年份浙江浆蜂(平湖)的优势等位基因长度及频率

年份

Year

遗传多样性

Genetic diversity

A14A88A107Ad3B124

平均

Mean

2012Na64129108.2
Ne2.893 91.366 75.113 64.033 64.119 03.505 4
Ho0.666 70.300 00.833 30.275 90.600 00.535 2
He0.665 50.272 90.818 10.765 30.770 10.658 4
PIC0.599 70.255 10.780 70.720 00.726 90.616 5
PHWENSNSNS**NS
2015Na74121178.2
Ne3.266 81.943 86.844 15.985 82.723 14.152 7
Ho0.766 70.466 70.933 30.310 30.600 00.615 4
He0.705 60.493 80.868 40.847 50.643 50.711 8
PIC0.643 90.440 30.839 00.812 30.591 30.665 4
PHWE**NSNS**NS
2019Na85121289.0
Ne2.834 61.683 75.521 54.961 73.087 53.617 8
Ho0.466 70.379 30.866 70.344 80.700 00.551 5
He0.658 20.413 20.832 80.812 50.687 60.680 8
PIC0.606 70.384 70.798 40.779 40.643 80.642 6
PHWE**NSNS**NS
表4  不同年份基于微卫星位点浙江浆蜂(平湖)的遗传多样性检测结果

年份

Year

样本数

Sample size

单倍型频率 Haplotype frequency/%
C1aC2dN1N2N3N4
20123080.020.056.720.020.03.3
20153086.713.380.013.33.33.3
20193093.36.790.06.73.30
表5  不同年份浙江浆蜂(平湖)的线粒体单倍型分布频率
1 国家畜禽遗传资源委员会.中国畜禽遗传资源志:蜜蜂志.北京:中国农业出版社,2011:69-74.
China National Commission of Animal Genetic Resources. Animal Genetic Resources in China: Bees. Beijing: China Agriculture Press, 2011:69-74. (in Chinese)
2 FRANCK P, GARNERY L, SOLIGNAC M, et al. The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution, 1998,52(4):1119-1134. DOI:10.1111/j.1558-5646.1998.tb01839.x
doi: 10.1111/j.1558-5646.1998.tb01839.x
3 DELANEY D A, MEIXNER M D, SCHIFF N M, et al. Genetic characterization of commercial honey bee (Hymenoptera: Apidae) populations in the United States by using mitochondrial and microsatellite markers. Annals of the Entomological Society of America, 2009,102(4):666-673. DOI:10.1603/008.102.0411
doi: 10.1603/008.102.0411
4 姜玉锁,赵慧婷,姜俊兵,等.中国境内不同地理型东方蜜蜂线粒体DNA tRNAleu~COⅡ基因多态性研究.中国农业科学,2007,40(7):1535-1542.
JIANG Y S, ZHAO H T, JIANG J B, et al. Studies on mtDNA tRNAleu-COⅡ gene polymorphisms of Apis cerana distributed in different geographic areas in China. Scientia Agricultura Sinica, 2007,40(7):1535-1542. (in Chinese with English abstract)
5 吉挺,陈晶,孟春玲,等.平湖浆蜂与苏王1号遗传多样性的微卫星DNA分析.中国畜牧兽医,2007,34(11):32-35. DOI:10.3969/j.issn.1671-7236.2007.11.010
JI T, CHEN J, MENG C L, et al. Analyzing of genetic diversity of Pinghu royal jelly bee and Suwang No.1 bee with microsatellite markers. Chinese Animal Husbandry and Veterinary Medicine, 2007,34(11):32-35. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-7236.2007.11.010
6 YIN L, JI T, CHEN G H, et al. Genetic characterization of three breeds of high royal jelly producing honeybee (Apis mellifera ligustica) in China. African Journal of Agricultural Research, 2011,6(2):331-337. DOI:10.5897/AJAR10.850
doi: 10.5897/AJAR10.850
7 CAO L F, ZHENG H Q, SHU Q Y, et al. Mitochondrial DNA characterization of high royal jelly producing honeybees (Hymenoptera: Apidae) in China. Journal of Apicultural Science, 2017,61(2):217-222. DOI:10.1515/JAS-2017-0016
doi: 10.1515/JAS-2017-0016
8 ESTOUP A, GARNERY L, SOLIGNAC M, et al. Microsatellite variation in honey bee(Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics,1995,140(2):679-695.
9 CORNUET J M, GARNERY L, SOLIGNAC M. Putative origin and function of the intergenic region between COⅠ and COⅡ of Apis mellifera L. mitochondrial DNA. Genetics, 1991,128(2):393-403.
10 ARIAS M C, SHEPPARD W S. Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 1996,5(3):557-566. DOI:10.1006/mpev.1996.0050
doi: 10.1006/mpev.1996.0050
11 YEH F C, YANG R, BOYLE T. POPGENE Version1.32 Microsoft Windows-based Freeware for Populations Genetic Analysis. Edmonton, Canada: University of Alberta, 1999.
12 ROZAS J, FERRER-MATA A, SáNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 2017,34(12):3299-3302. DOI:10.1093/molbev/msx248
doi: 10.1093/molbev/msx248
13 BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980,32:314-331.
14 TAKEZAKI N, NEI M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 1996,144(1):389-399.
15 吉挺,陈晶,包文斌,等.江苏省意大利蜂与中华蜜蜂微卫星DNA遗传多样性分析.安徽农业科学,2007,35(32):10232-10233, 10325. DOI:10.13989/j.cnki.0517-6611.2007.32.074
JI T, CHEN J, BAO W B, et al. Microsatellite DNA analysis on genetic diversity of Apis mellifera L. and Apis sinensis in Jiangsu Province. Journal of Anhui Agricultural Sciences, 2007,35(32):10232-10233, 10235. (in Chinese with English abstract)
doi: 10.13989/j.cnki.0517-6611.2007.32.074
16 彭文君,罗其花,李长春,等.基于微卫星标记的东北黑蜂群体遗传多态性分析.中国农业科学,2012,45(21):4484-4491. DOI:10.3864/j.issn.0578-1752.2012.21.017
PENG W J, LUO Q H, LI C C, et al. Genetic diversity of northeastern black bee (Apis mellifera ssp.) in China based on microsatellite markers. Scientia Agricultura Sinica, 2012,45(21):4484-4491. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.21.017
17 陈孝梅,王康,张文文,等.采用微卫星DNA标记分析东北黑蜂小群保种效果.环境昆虫学报,2019,41(5):1125-1132. DOI:10.3969/j.issn.1674-0858.2019.05.28
CHEN X M, WANG K, ZHANG W W, et al. Microsatellite DNA marker for analysis of breed conservation of Apis mellifera ssp. Journal of Environmental Entomology, 2019,41(5):1125-1132. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-0858.2019.05.28
[1] 苏胜彦,张林兵,李海洋,郜灿,贺鑫晋,田灿,李建林,王美垚,唐永凯. 基于微卫星标记的大口黑鲈(Micropterus salmoides)原种和养殖群体遗传多样性和结构分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 687-698.
[2] 忻雅,方献平,王淑珍,童建新,来文国,汪建荣,余红. 简单重复序列标记和序列相关扩增多态性标记在草莓遗传多样性分析中的比较[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 278-287.
[3] 曹联飞,顾佩佩,林宇清. 浙江丽水中华蜜蜂线粒体遗传多样性分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 425-430.
[4] 陆俊贤, 贾晓旭, 唐修君, 樊艳凤, 唐梦君, 高玉时, 苏一军. 2个云南原始鸡种遗传多样性及其与红色原鸡的亲缘关系[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 385-390.
[5] 鹿连明, 程保平, 杜丹超, 胡秀荣, 蒲占湑, 陈国庆. 蜡蚧菌的遗传多样性及其对柑橘木虱的致病性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 34-43.
[6] 周佳萍, 杨春元, 吴春, 王仁刚, 史跃伟, 谢升东, 王志红, 徐海明, 任学良. 烟草核心种质库构建及遗传多样性研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 440-450.
[7] 章学东1*, 李庆海1, 张成先2, 陈贤惠2, 楼立峰1, 王欢欢1. 东乡绿壳蛋鸡线粒体DNA控制区多态性及与9种地方乌鸡的进化分析[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 103-110.
[8] 许丽花1, 李巍2, 吴春琳1, 董在杰3, 王成辉1. 应用3种遗传分析方法分析养殖鲤与天然群体的遗传差异[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 393-399.
[9] 龚亚明, 徐盛春, 毛伟华, 李泽昀. 豌豆EST‐SSR 标记在蚕豆中的通用性与应用[J]. 浙江大学学报(农业与生命科学版), 2011, 37(5): 479-484.
[10] 周国治, 李志邈, 杨悦俭, 邢娟, 王荣青. 番茄抗青枯病种质资源遗传多样性的AFLP分析[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 390-394.
[11] 李继霞,王 钜,刘一农. mtDNA A3243G 点突变小鼠模型的建立及其致病机制探讨[J]. 浙江大学学报(农业与生命科学版), 2008, 34(6): 621-628.
[12] 李海明 胡瑞法 . 国外稻种资源对我国水稻生产的贡献[J]. 浙江大学学报(农业与生命科学版), 2008, 34(1): 65-72.
[13] 金则新 李钧敏 李建辉 . 木荷种群遗传多样性的ISSR分析 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(3): 271-276.
[14] 张文标 金则新 李钧敏. 濒危植物香果树自然居群遗传多样性的RAPD分析[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 61-67.
[15] 李钧敏  金则新 . 甜槠种群在不同演替阶段森林群落中的遗传多样性[J]. 浙江大学学报(农业与生命科学版), 2006, 32(2): 232-236.