Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (6): 687-698    DOI: 10.3785/j.issn.1008-9209.2020.04.031
数量遗传与生物信息     
基于微卫星标记的大口黑鲈(Micropterus salmoides)原种和养殖群体遗传多样性和结构分析
苏胜彦1(),张林兵2,李海洋3,郜灿2,贺鑫晋4,田灿5,李建林1,王美垚1,唐永凯1()
1.中国水产科学研究院淡水渔业研究中心,农业农村部淡水渔业与种质资源利用重点实验室,江苏 无锡 214081
2.安徽张林渔业有限公司,安徽 铜陵 244000
3.安徽省农业科学院水产研究所,合肥 230031
4.山西农业大学动物科技学院,山西 晋中 030800
5.上海海洋大学水产科学国家级实验教学示范中心,上海 201306
Genetic diversity and structure analyses of largemouth bass (Micropterus salmoides) original and cultured populations based on microsatellite markers
Shengyan SU1(),Linbing ZHANG2,Haiyang LI3,Can GAO2,Xinjin HE4,Can TIAN5,Jianlin LI1,Meiyao WANG1,Yongkai TANG1()
1.Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
2.Zhanglin Fisheries Co. , Ltd. , Tonglin 244000, Anhui, China
3.Institute of Aquaculture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
4.College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, Shanxi, China
5.National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
 全文: PDF(1423 KB)   HTML
摘要:

为了解大口黑鲈(Micropterus salmoides)的种质资源遗传背景,采用11个微卫星位点研究了大口黑鲈原种(加州原种)、从台湾省引进的台湾选育种(台湾加州鲈)和大陆本土化的养殖种(优鲈1号)的遗传多样性及遗传结构。结果显示:加州原种的等位基因数和有效等位基因数显著高于优鲈1号和台湾加州鲈;其中,加州原种的5个位点的观察杂合度和期望杂合度显著高于优鲈1号和台湾加州鲈,而后两者类似。从多态信息含量来看,加州原种群体中有11个位点处于高度多态水平,优鲈1号群体和台湾加州鲈群体分别有6和4个位点处于高度多态水平。在遗传平衡检验中发现:台湾加州鲈群体中偏离哈代-温伯格平衡的位点较多(P<0.05),而加州原种存在3个连锁座位对的连锁不平衡状态(P<0.05)。在双相突变模型中,无论是WILCOXON检验还是符号检验,加州原种群体均处于突变-漂移不平衡状态。分子方差分析(analysis of molecular variance, AMOVA)发现:大口黑鲈群体中15.57%的遗传变异来自群体间,25.05%的遗传变异来自群体内个体间,59.38%的遗传变异来自个体间(P<0.01)。聚类分析发现:加州原种和优鲈1号之间的遗传距离最大,其次为加州原种和台湾加州鲈之间的遗传距离。当K为2时,加州原种与优鲈1号、台湾加州鲈的遗传结构有明显的差异。对个体的种群鉴定发现:加州原种群体被误判的比例最低,其次是优鲈1号,最后是台湾加州鲈。在判别准确率为85.00%的水平上,加州原种被判别正确的概率是67.70%,优鲈1号是53.30%,台湾加州鲈是20.00%。从遗传多样性、遗传距离、平衡分析均发现,加州原种多态性高,遗传距离较另外2个群体较远,并可能存在过遗传瓶颈,聚类和个体的种群鉴定进一步证明了此观点。这提示从美国引进的大口黑鲈原种应该扩群保种并系统地进行育种开发工作。

关键词: 大口黑鲈微卫星标记遗传多样性遗传结构    
Abstract:

In order to examine the genetic background of Micropterus salmoides, eleven microsatellite loci were used to study the genetic diversity and structure of the introduced subspecies (California M. salmoides), selected subspecies from Taiwan Province (Taiwan-California M. salmoides) and cultured species (Youlu No. 1) in mainland. The results showed that both the number of alleles and effective alleles was higher in California M. salmoides than in Taiwan-California M. salmoides and Youlu No. 1. The observed heterozygosity and expected heterozygosity at five loci were significantly higher in California population than in Taiwan-California and Youlu No. 1 populations, which were similar. According to the polymorphic information content, eleven loci in the California population were at high polymorphic levels. Six loci and four loci were at highly polymorphic levels for Youlu No. 1 and Taiwan-California populations, respectively. In the genetic equilibrium test, it was found that there were more loci deviating from Hardy-Weinberg equilibrium in Taiwan-California population, and there were three linkage pairs in California population (P<0.05). For the two-phased model of mutation (TPM), both WILCOXON and sign tests showed that California population was in a status of mutation-drift disequilibrium. For population structure, it was found by analysis of molecular variance (AMOVA) that 15.57% of the genetic variation came from among populations, 25.05% from within populations, and 59.38% from among individuals (P<0.01). The genetic distance between California population and Youlu No. 1 population was the largest, followed by that between California population and Taiwan-California population. When the K was two, there were significant differences in genetic structures between California population and other two populations. Through individual population identification, California population had the lowest rate of misjudgment, followed by Youlu No. 1 and Taiwan-California populations. When the accuracy was 85.00%, the probabilities of correct discrimination of California, Youlu No. 1 and Taiwan-California populations were 67.70%, 53.30% and 20.00%, respectively. According to the analysis of genetic diversity, genetic distance and equilibrium test, it was found that the original species of California had high polymorphism, and the genetic distance was bigger than that of the other two populations, and there might be genetic bottleneck. It is suggested that the species of M. salmoides introduced from the United States should be expanded and cultivated systematically.

Key words: Micropterus salmoides    microsatellite marker    genetic diversity    genetic structure
收稿日期: 2020-04-03 出版日期: 2020-12-31
CLC:  Q 75  
基金资助: 中国水产科学研究院基本科研业务费(2020JBFJ02);物种品种资源保护费(水产新品种生产性能测试等第三方评价)
通讯作者: 唐永凯     E-mail: susy@ffrc.cn;tangyk@ffrc.cn
作者简介: 苏胜彦(https://orcid.org/0000-0001-8881-8410),Tel:+86-510-85555796,E-mail:susy@ffrc.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏胜彦
张林兵
李海洋
郜灿
贺鑫晋
田灿
李建林
王美垚
唐永凯

引用本文:

苏胜彦,张林兵,李海洋,郜灿,贺鑫晋,田灿,李建林,王美垚,唐永凯. 基于微卫星标记的大口黑鲈(Micropterus salmoides)原种和养殖群体遗传多样性和结构分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 687-698.

Shengyan SU,Linbing ZHANG,Haiyang LI,Can GAO,Xinjin HE,Can TIAN,Jianlin LI,Meiyao WANG,Yongkai TANG. Genetic diversity and structure analyses of largemouth bass (Micropterus salmoides) original and cultured populations based on microsatellite markers. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 687-698.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.04.031        http://www.zjujournals.com/agr/CN/Y2020/V46/I6/687

名称

Name

正向引物(5′→3′)

Forward primer (5′→3′)

反向引物(5′→3′)

Reverse primer (5′→3′)

扩增片段长度

Product

size/bp

退火温度

Annealing

temperature/℃

JZL114[18]CTACAGGTTAGGGAGTTACACGTGCTGAGGACACAACGAGGT192~23055
MiSaTPW01[18]AGTAAAGGACCACCCTTGTCCAGCCTGGTCATTAGGTTTCGGAG288~29856
JZL37[7]TCCAGCCTTCTTGATTCCTCCCCGTTTAGCCAGAGAAGTG177~20156
Mdo6[18]TGAAATGTACGCCAGAGCAGTGTGTGGGTGTTTATGTGGG146~16455
MiSaTPW117[18]TGTGAAAGGCACAACACAGCCTGCATCGACCTGCAGACCAGCAACACT209~24255
JZL108[18]GTGACAGATGAGCGGAGAAGATGCTTGAGATACGACTA276~28355
MiSaTPW123[18]GCTAACTTAATCTGCTGGATGGTGTGAACCTTCATAGGACAGCC148~16655
JZL85[7]GGGGCTCACTCACTGTGTTTGTGCGCAGACAGCTAGACAG199~22556
MiSaTPW165[18]GTTCGCATCTGAATGCATGTGGTGCAGTGAAGGTATTAGCCTCAGCCTACA236~25855
MiSaTPW96[18]CTTCTAAATGTGTGTAGGGTTGCAGCTTAGCATAAAGACTGGGAAC372~40555
Mdo7[18]TCAAACGCACCTTCACTGACGTCACTCCCATCATGCTCCT156~17255
表1  微卫星引物信息

参量

Parameter

品种

Species

JZL114MiSaTPW01JZL37Mdo6MiSaTPW117JZL108

等位基因数

Number of alleles

加州原种 California M. salmoides8346610
优鲈1号 Youlu No. 1533534
台湾加州鲈 Taiwan-California M. salmoides623434
总计 Total11569611

有效等位基因数

Effective number

of alleles

加州原种 California M. salmoides4.891.811.771.732.783.42
优鲈1号 Youlu No. 13.151.271.182.872.041.60
台湾加州鲈 Taiwan-California M. salmoides4.051.301.142.192.601.59
总计 Total4.791.811.312.362.922.06

观察杂合度

Observed

heterozygosity

加州原种 California M. salmoides0.530.500.090.290.560.56
优鲈1号 Youlu No. 10.790.080.120.730.540.31
台湾加州鲈 Taiwan-California M. salmoides1.000.000.100.800.530.30
总计 Total0.830.130.100.610.540.38

期望杂合度

Expected

heterozygosity

加州原种 California M. salmoides0.820.460.440.430.660.72
优鲈1号 Youlu No. 10.700.210.150.660.520.38
台湾加州鲈 Taiwan-California M. salmoides0.770.240.130.550.630.38
总计 Total0.800.450.240.580.660.52

参量

Parameter

品种

Species

JZL85MiSaTPW123MiSaTPW165MiSaTPW96Mdo7

等位基因数

Number of alleles

加州原种 California M. salmoides53496
优鲈1号 Youlu No. 153354
台湾加州鲈 Taiwan-California M. salmoides52443
总计 Total835128

有效等位基因数

Effective number

of alleles

加州原种 California M. salmoides2.001.422.434.863.23
优鲈1号 Youlu No. 12.431.692.282.671.46
台湾加州鲈 Taiwan-California M. salmoides2.451.761.872.361.57
总计 Total3.051.652.223.471.94

观察杂合度

Observed

heterozygosity

加州原种 California M. salmoides0.640.350.620.820.48
优鲈1号 Youlu No. 10.480.180.580.790.29
台湾加州鲈 Taiwan-California M. salmoides0.430.430.430.830.43
总计 Total0.510.320.520.820.40

期望杂合度

Expected

heterozygosity

加州原种 California M. salmoides0.510.300.610.820.70
优鲈1号 Youlu No. 10.600.420.570.640.32
台湾加州鲈 Taiwan-California M. salmoides0.600.440.470.590.37
总计 Total0.680.400.550.720.49
表2  大口黑鲈群体的遗传多样性检测结果

位点

Locus

观察F

Observed F value

最小F

Minimum

value of F

最大F

Maximum

value of F

平均值

Mean

标准误

Standard error

95%的置信下限

95% lower

confidence limit

95%的置信上限

95% upper

confidence limit

JZL1140.210.090.870.260.010.150.49
MiSaTPW010.550.200.940.510.030.270.86
JZL370.770.170.940.450.020.240.82
Mdo60.420.110.910.340.020.180.65
MiSaTPW1170.340.170.930.450.020.240.81
JZL1080.490.090.890.280.010.150.57
MiSaTPW1230.610.330.980.690.040.380.98
JZL850.330.130.920.360.020.190.69
MiSaTPW1650.450.200.940.510.030.270.86
MiSaTPW960.290.080.860.250.010.140.51
Mdo70.520.130.920.370.020.200.67
表3  大口黑鲈群体的中性测试分析

位点

Locus

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

总体

All

JZL1140.430.770.010.10
MiSaTPW010.730.010.000.00
JZL370.000.110.090.00
Mdo60.100.000.000.00
MiSaTPW1170.700.130.470.23
JZL1080.480.510.010.02
MiSaTPW1230.690.000.930.02
JZL850.790.160.030.05
MiSaTPW1650.790.640.210.21
MiSaTPW960.810.500.050.20
Mdo70.490.080.340.02
表4  微卫星位点的哈代-温伯格平衡检验

参量

Parameter

模型

Model

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

杂合度过量期望基因座位数

Expected number of loci with heterozygosity excess

IAM6.366.135.79
TPM6.526.386.16
SMM6.606.586.30

杂合度过量观察基因座位数

Observed number of loci with heterozygosity excess

IAM579
TPM366
SMM033

杂合度缺失观察基因座位数

Observed number of loci with heterozygosity

deficiency

IAM642
TPM855
SMM1188

符号检验

Sign test

IAM0.300.420.05
TPM0.030.290.58
SMM0.000.030.04

WILCOXON检验(双尾)

WILCOXON test (two-tailed)

IAM0.700.900.10
TPM0.020.460.97
SMM0.000.020.21
表6  IAM、TPM和SMM检验下大口黑鲈杂合度过量期望或缺失的基因座位数

指数

Index

JZL114MiSaTPW01JZL37Mdo6MiSaTPW117JZL108MiSaTPW123JZL85MiSaTPW165MiSaTPW96Mdo7
Nm2.720.304.373.761.673.2711.491.174.372.083.24
Fis-0.040.350.56-0.130.080.200.150.08-0.01-0.230.12
Fit0.050.650.59-0.060.200.250.170.240.05-0.100.18
Fst0.080.40.050.060.130.070.020.180.050.110.07
表8  大口黑鲈群体11个微卫星位点的F统计量

参量

Parameter

品种

Species

JZL114MiSaTPW01JZL37Mdo6MiSaTPW117JZL108

香农指数

Shannon-Wiener index

加州原种 California M. salmoides1.780.790.820.921.341.60
优鲈1号 Youlu No. 11.240.440.321.250.880.72

台湾加州鲈

Taiwan-California M. salmoides

1.500.390.280.931.030.76

多态信息含量

Polymorphism information

content

加州原种 California M. salmoides0.710.600.630.490.710.76
优鲈1号 Youlu No. 10.750.390.380.650.610.41

台湾加州鲈

Taiwan-California M. salmoides

0.740.200.130.480.610.37

参量

Parameter

品种

Species

JZL85MiSaTPW123MiSaTPW165MiSaTPW96Mdo7

香农指数

Shannon-Wiener index

加州原种 California M. salmoides1.010.531.071.811.43
优鲈1号 Youlu No. 11.110.690.931.160.65

台湾加州鲈

Taiwan-California M. salmoides

1.120.620.860.980.67

多态信息含量

Polymorphism information

content

加州原种 California M. salmoides0.660.490.590.750.74
优鲈1号 Youlu No. 10.610.480.680.720.39

台湾加州鲈

Taiwan-California M. salmoides

0.600.340.460.570.36
表7  大口黑鲈群体的遗传多样性检测结果

变异来源

Source of variation

自由度

Degree of freedom

平方和

Sum of squares

方差组分

Variance component

变异百分率

Percentage of variation/%

总计 Total179626.723.70100.00
群体间 Among populations277.170.5815.57

群体内个体间

Among individuals within populations

87352.050.9325.05
个体间 Among individuals90197.502.1959.38
表9  大口黑鲈群体的AMOVA结果

品种

Species

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

加州原种 California M. salmoides10.680.70
优鲈1号 Youlu No. 10.3910.98
台湾加州鲈 Taiwan-California M. salmoides0.360.021
表10  大口黑鲈群体的遗传相似度和相对遗传距离
图1  大口黑鲈群体的聚类和遗传结构分析A.邻接聚类结果(图中的数字代表线的相对长度);B. 大口黑鲈群体的遗传结构分析。

品种

Species

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

abcabcabc
加州原种 California M. salmoides1721000000
优鲈1号 Youlu No. 1331853202
台湾加州鲈 Taiwan-California M. salmoides5241020402
表11  大口黑鲈群体被误判的个体数
位点 LocusPP value
12

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

总体

All

JZL114MiSaTPW010.670.460.430.67
JZL114JZL371.001.000.911.00
MiSaTPW01JZL371.001.000.360.92
JZL114Mdo60.840.270.070.21
MiSaTPW01Mdo60.790.001.000.04
JZL37Mdo60.250.800.810.72
JZL114MiSaTPW1170.030.320.520.10
MiSaTPW01MiSaTPW1170.851.000.080.51
JZL37MiSaTPW1170.920.330.550.74
Mdo6MiSaTPW1170.050.890.110.10
JZL114JZL1081.000.740.700.97
MiSaTPW01JZL1080.620.010.560.05
JZL37JZL1080.020.760.380.11
Mdo6JZL1080.270.020.560.07
MiSaTPW117JZL1080.350.820.950.85
JZL114MiSaTPW1230.350.460.550.56
MiSaTPW01MiSaTPW1230.500.160.180.20
JZL37MiSaTPW1230.390.250.060.12
Mdo6MiSaTPW1230.860.020.160.07
MiSaTPW117MiSaTPW1230.140.910.640.54
JZL108MiSaTPW1230.260.420.000.01
JZL114JZL850.690.190.830.62
MiSaTPW01JZL850.810.540.220.59
JZL37JZL850.400.200.850.49
Mdo6JZL850.460.790.510.76
MiSaTPW117JZL850.800.170.650.56
JZL108JZL850.870.460.300.65
MiSaTPW123JZL850.400.440.760.67
JZL114MiSaTPW1651.000.820.981.00
MiSaTPW01MiSaTPW1651.000.420.520.80
JZL37MiSaTPW1650.290.170.010.03
Mdo6MiSaTPW1650.090.810.430.33
MiSaTPW117MiSaTPW1650.010.490.120.02
JZL108MiSaTPW1650.670.630.230.59
MiSaTPW123MiSaTPW1650.260.140.340.19
JZL85MiSaTPW1650.990.830.560.96
JZL114MiSaTPW960.420.170.570.37
MiSaTPW01MiSaTPW960.521.001.000.97
JZL37MiSaTPW960.940.500.270.66
Mdo6MiSaTPW960.060.330.450.14
MiSaTPW117MiSaTPW960.860.070.690.38
JZL108MiSaTPW960.970.430.010.09
MiSaTPW123MiSaTPW960.140.120.760.19
JZL85MiSaTPW960.880.440.200.53
MiSaTPW165MiSaTPW960.110.350.380.20
JZL114Mdo70.220.480.240.28
MiSaTPW01Mdo70.881.000.520.95
JZL37Mdo70.290.131.000.37
Mdo6Mdo70.790.470.700.85
MiSaTPW117Mdo70.680.880.410.84
JZL108Mdo70.300.690.350.51
MiSaTPW123Mdo70.140.040.810.10
JZL85Mdo70.060.200.980.19
MiSaTPW165Mdo71.000.540.890.96
MiSaTPW96Mdo70.550.570.700.81
表5  大口黑鲈群体微卫星基因座间的连锁不平衡检验
1 梁素娴,白俊杰,叶星,等.养殖大口黑鲈的遗传多样性分析.大连水产学院学报,2007,22(4):260-263. DOI:10.3969/j.issn.1000-9957.2007.04.005
LIANG S X, BAI J J, YE X, et al. RAPD analysis of genetic diversity for cultured largemouth bass Micropterus salmoides. Journal of Dalian Fisheries University, 2007,22(4):260-263. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-9957.2007.04.005
2 陈文华,阮瑞霞,宣云峰,等.3个不同地理群体大口黑鲈遗传多样性分析.江苏农业科学,2012,40(8):231-233. DOI:10.3969/j.issn.1002-1302.2012.08.092
CHEN W H, RUAN R X, XUAN Y F, et al. Genetic diversity of Micropterus salmoides in 3 different geographical populations. Jiangsu Agricultural Sciences, 2012,40(8):231-233. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-1302.2012.08.092
3 卢建峰,白俊杰,李胜杰,等.大口黑鲈选育群体遗传多样性的AFLP分析.淡水渔业,2010,40(3):3-7. DOI:10.3969/j.issn.1000-6907.2010.03.001
LU J F, BAI J J, LI S J, et al. AFLP analysis of genetic diversity in consecutive selected populations of largemouth bass (Micropterus salmoides). Freshwater Fisheries, 2010,40(3):3-7. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6907.2010.03.001
4 卢建峰,白俊杰,李胜杰.大口黑鲈选育群体和养殖群体的遗传多样性研究分析//中国水产学会学术年会论文摘要集.北京:中国水产学会,2009.
LU J F, BAI J J, LI S J. AFLP analysis of genetic diversity for consecutive selected populations and cultured stocks of largemouth bass (Micorpterus salmoides)//Proceedings ofthe Annual Meeting of China Society of Fisheries. Beijing: China Society of Fisheries, 2009. (in Chinese with English abstract)
5 孙成飞,谢汶峰,胡婕,等.大口黑鲈3个养殖群体的遗传多样性分析.南方水产科学,2019,15(2):64-71. DOI:10.12131/20180203
SUN C F, XIE W F, HU J, et al. Genetic diversity analysis of three cultured populations of Micropterus salmoides. South China Fisheries Science, 2019,15(2):64-71. (in Chinese with English abstract)
doi: 10.12131/20180203
6 樊佳佳,白俊杰,李胜杰,等.驯食配合饲料的大口黑鲈3个选育世代的遗传多样性分析.渔业科学进展,2019,40(4):57-64. DOI:10.19663/j.issn2095-9869.20180420002
FAN J J, BAI J J, LI S J, et al. Analysis on genetic diversity of three breeding populations of largemouth bass using formulated feeds. Progress in Fishery Sciences, 2019,40(4):57-64. (in Chinese with English abstract)
doi: 10.19663/j.issn2095-9869.20180420002
7 李镕,白俊杰,李胜杰,等.大口黑鲈选育群体遗传结构的微卫星分析.广东海洋大学学报,2010,30(3):11-15. DOI:10.3969/j.issn.1673-9159.2010.03.003
LI R, BAI J J, LI S J, et al. Analysis on genetic structure of selected population of largemouth bass by microsatellite DNA markers. Journal of Guangdong Ocean University, 2010,30(3):11-15. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-9159.2010.03.003
8 樊佳佳,白俊杰,李胜杰,等.大口黑鲈微卫星DNA指纹图谱的构建和遗传结构分析.水生生物学报,2012,36(4):600-609. DOI:10.3724/SP.J.1035.2012.00600
FAN J J, BAI J J, LI S J, et al. Establishment of DNA fingerprinting and analysis on genetic structure of largemouth bass with microsatellite. Acta Hydrobiologica Sinica, 2012,36(4):600-609. (in Chinese with English abstract)
doi: 10.3724/SP.J.1035.2012.00600
9 蔡磊,白俊杰,李胜杰,等.大口黑鲈北方亚种和佛罗里达亚种及其杂交子代的遗传分析.中国水产科学,2012,19(1):70-76. DOI:10.3724/SP.J.1118.2012.00070
CAI L, BAI J J, LI S J, et al. Genetic analysis of northern largemouth bass, Florida largemouth bass, and their reciprocal hybrids. Journal of Fishery Sciences of China, 2012,19(1):70-76. (in Chinese with English abstract)
doi: 10.3724/SP.J.1118.2012.00070
10 李胜杰,白俊杰,叶星,等.基于线粒体D-loop区探讨我国养殖大口黑鲈的分类地位和遗传变异.海洋渔业,2008(4):291-296. DOI:10.3969/j.issn.1004-2490.2008.04.001
LI S J, BAI J J, YE X, et al. Approach on the taxonomic status and genetic variation of largemouth bass (Micropterus salmoides) cultured in China based on mitochondrial D-loop gene. Marine Fishery, 2008(4):291-296. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-2490.2008.04.001
11 张大莉,董仕,白俊杰,等.大口黑鲈北方亚种和佛罗里达亚种mtDNA COⅠ序列的分析.大连海洋大学学报,2014,29(3):212-216. DOI:10.3969/J.ISSN.2095-1388.2014.03.002
ZHANG D L, DONG S, BAI J J, et al. Sequence analysis of mtDNA COⅠ region in northern and Florida subspecies of largemouth bass Micropterus salmoides. Journal of Dalian Ocean University, 2014,29(3):212-216. (in Chinese with English abstract)
doi: 10.3969/J.ISSN.2095-1388.2014.03.002
12 梁素娴,孙效文,白俊杰,等.微卫星标记对中国引进加州鲈养殖群体遗传多样性的分析.水生生物学报,2008,32(5):694-700. DOI:10.3724/SP.J.0000.2008.50694
LIANG S X, SUN X W, BAI J J, et al. Genetic analysis for cultured largemouth bass (Micropterus Salmoides) in China with microsatellites. Acta Hydrobiologica Sinica, 2008,32(5):694-700. (in Chinese with English abstract)
doi: 10.3724/SP.J.0000.2008.50694
13 任桂静.玉筋鱼和松江鲈微卫星标记的开发及群体遗传学研究.山东,青岛:中国海洋大学,2012.
REN G J. Development of microsatellite DNA markers and population genetics for sand lance (Ammodytes personatus) and roughskin sculpin (Trachidermus fasciatus). Qingdao, Shangdong: Ocean University of China, 2012. (in Chinese with English abstract)
14 祁得林.黄河上游花斑裸鲤Cyt b基因的序列变异和遗传多样性.动物学研究,2009,30(3):255-261. DOI:10.3724/SP.J.1141.2009.03255
QI D L. Genetic variation and diversity of Gymncypris eckloni in the upper yellow river inferred from mitochondrial cytochrome b gene. Zoological Research, 2009,30(3):255-261. (in Chinese with English abstract)
doi: 10.3724/SP.J.1141.2009.03255
15 PRUETT C L, WINKER K. Northwestern song sparrow populations show genetic effects of sequential colonization. Molecular Ecology, 2005,14(5):1421-1434. DOI:10.1111/j.1365-294X.2005.02493.x
doi: 10.1111/j
16 CLEGG S M, DEGNAN S M, KIKKAWA J, et al. Genetic consequences of sequential founder events by an island-colonizing bird. PNAS, 2002,99(12):8127-8132. DOI:10.1073/pnas.102583399
doi: 10.1073/pnas.102583399
17 CORNUET J M, LUIKART G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1996,144(4):2001-2014. DOI:10.3892/ijo_00000551
doi: 10.3892/ijo_00000551
18 樊佳佳,白俊杰,李小慧,等.大口黑鲈生长性状的微卫星DNA标记筛选.遗传,2009,31(5):515-522. DOI:10.3724/SP.J.1005.2009.00515
FAN J J, BAI J J, LI X H, et al. Identification of microsatellite markers associated with growth traits in largemouth bass (Micropterus salmoides L.). Hereditas (Beijing), 2009,31(5):515-522. (in Chinese with English abstract)
doi: 10.3724/SP.J.1005.2009.00515
19 YEH F C, BOYLE T. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997,129:157.
20 ROUSSET F. GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 2008,8(1):103-106. DOI:10.1111/j.1471-8286.2007.01931.x
doi: 10.1111/j.1471-8286.2007.01931.x
21 BOTSTEIN D R, WHITE R L, SKOLNICK M H, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980,32(3):314-331.
22 EXCOFFIER L, LISCHER H E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 2010,10(3):564-567. DOI:10.1111/j.1755-0998.2010.02847.x
doi: 10.1111/j.1755-0998
23 KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018,35(6):1547-1549. DOI:10.1093/molbev/msy096
doi: 10.1093/molbev/msy096
24 KIMURA M, CROW J F. The number of alleles that can be maintained in a finite population. Genetics, 1964,49(4):725-738.
25 OHTA T, KIMURA M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetical Research, 1973,22(2):201-204.
26 RIENZO A D, PETERSON A C, GARZA J C, et al. Mutational processes of simple-sequence repeat loci in human populations. PNAS, 1994,91(8):3166-3170.
27 PIRY S, ALAPETITE A, CORNUET J M, et al. GeneClass 2: a software for genetic assignment and first generation migrant detection. Journal of Heredity, 2004,95(6):536-539. DOI:10.1093/jhered/esh074
doi: 10.1093/jhered/esh074
28 HUBISZ M J, FALUSH D, STEPHENS M, et al. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 2009,9(5):1322-1332. DOI:10.1111/j.1755-0998.2009.02591.x
doi: 10.1111/j.1755-0998.2009.02591.x
29 JAKOBSSON M, ROSENBERG N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007,23(14):1801-1806. DOI:10.1093/bioinformatics/btm233
doi: 10.1093/bioinformatics/btm233
30 ROSENBER N A. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 2003,4(1):137-138. DOI:10.1046/j.1471-8286.2003.00566.x
doi: 10.1046/j.1471-8286.2003.00566.x
31 PAETKAU D, SLADE R, BURDEN M, et al. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 2004,13(1):55-65. DOI:10.1046/j.1365-294X.2004.02008.x
doi: 10.1046/j.1365-294X.2004.02008.x
32 RANNALA B, MOUNTAI J L. Detecting immigration by using multilocus genotypes. PNAS, 1997,94(17):9197-9201. DOI:10.1073/pnas.94.17.9197
doi: 10.1073/pnas.94.17.9197
33 蔡磊,白俊杰,李胜杰,等.大口黑鲈北方亚种、佛罗里达亚种及其杂交子代的形态特征和遗传分析//中国水产学会学术年会论文摘要集.北京:中国水产学会,2011.
CAI L, BAI J J, LI S J, et al. Morphological and genetic analysis of northern largemouth bass, Florida largemouth bass and their reciprocal hybrids//Proceedings of the Annual Meeting of China Society of Fisheries. Beijing: China Society of Fisheries, 2011. (in Chinese with English abstract)
34 李胜杰,白俊杰,韩林强,等.大口黑鲈“优鲈3号”养殖实例.科学养鱼,2018,349(9):44-45.
LI S J, BAI J J, HAN L Q, et al. A case study of Micropterus salmoides ‘Excellent bass 3’. Scientific Fish Farming, 2018,349(9):44-45. (in Chinese)
35 AUSTIN J J, OLIVIER L C, NANKERVI D, et al. Twenty microsatellite loci for population and conservation genetic studies of the wedge-tailed eagle (Aquila audax). Australian Journal of Zoology, 2014,62(3):235-237. DOI:10.1071/ZO14030
doi: 10.1071/ZO1
36 LEE W C. Searching for disease susceptibility loci by testing for Hardy-Weinberg disequilibrium in a gene bank of affected individuals. American Journal of Epidemiology, 2003,158(5):397-400.
[1] 忻雅,方献平,王淑珍,童建新,来文国,汪建荣,余红. 简单重复序列标记和序列相关扩增多态性标记在草莓遗传多样性分析中的比较[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 278-287.
[2] 曹联飞,顾佩佩,林宇清. 浙江丽水中华蜜蜂线粒体遗传多样性分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 425-430.
[3] 鹿连明, 程保平, 杜丹超, 胡秀荣, 蒲占湑, 陈国庆. 蜡蚧菌的遗传多样性及其对柑橘木虱的致病性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 34-43.
[4] 周佳萍, 杨春元, 吴春, 王仁刚, 史跃伟, 谢升东, 王志红, 徐海明, 任学良. 烟草核心种质库构建及遗传多样性研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 440-450.
[5] 许丽花1, 李巍2, 吴春琳1, 董在杰3, 王成辉1. 应用3种遗传分析方法分析养殖鲤与天然群体的遗传差异[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 393-399.
[6] 龚亚明, 徐盛春, 毛伟华, 李泽昀. 豌豆EST‐SSR 标记在蚕豆中的通用性与应用[J]. 浙江大学学报(农业与生命科学版), 2011, 37(5): 479-484.
[7] 周国治, 李志邈, 杨悦俭, 邢娟, 王荣青. 番茄抗青枯病种质资源遗传多样性的AFLP分析[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 390-394.
[8] 李海明 胡瑞法 . 国外稻种资源对我国水稻生产的贡献[J]. 浙江大学学报(农业与生命科学版), 2008, 34(1): 65-72.
[9] 金则新 李钧敏 李建辉 . 木荷种群遗传多样性的ISSR分析 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(3): 271-276.
[10] 张文标 金则新 李钧敏. 濒危植物香果树自然居群遗传多样性的RAPD分析[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 61-67.
[11] 李钧敏  金则新 . 甜槠种群在不同演替阶段森林群落中的遗传多样性[J]. 浙江大学学报(农业与生命科学版), 2006, 32(2): 232-236.
[12] QUENUM Florent J-B  颜启传  龚秋菊. 芝麻次级核心样品表型变异和相关性(英文)[J]. 浙江大学学报(农业与生命科学版), 2004, 30(1): 10-16.
[13] 包志毅  张华  包劲松  黄哲. 应用RAPD分析红檵木变异类型的遗传多样性[J]. 浙江大学学报(农业与生命科学版), 2003, 29(6): 665-670.
[14] 何新华  陈力耕  胡西琴  张建业. 杨梅根瘤Frankia菌分离株的遗传多样性研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(6): 659-663.
[15] 陈云鹏 曹家树 缪颖 叶纨芝. 芸薹类蔬菜基因组DNA遗传多样性的RAPD分析[J]. 浙江大学学报(农业与生命科学版), 2000, 26(2): 131-136.