Please wait a minute...
浙江大学学报(农业与生命科学版)  2019, Vol. 45 Issue (1): 8-13    DOI: 10.3785/j.issn.1008-9209.2018.02.012
作物栽培与生理     
干旱胁迫下大麦蜡质缺失突变体的生理生化指标及蜡质基因表达
郑好(),吕夏晨,谭赛琼,路雪丽,张弦,张晓勤(),薛大伟()
1. 杭州师范大学生命与环境科学学院,杭州 310036
Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress
Hao ZHENG(),Xiachen Lü,Saiqiong TAN,Xueli LU,Xian ZHANG,Xiaoqin ZHANG(),Dawei XUE()
1. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
 全文: PDF(861 KB)   HTML ( HTML
摘要:

以野生型大麦品种浙农大3号(ZJU3)和蜡粉缺失突变体P1为试验材料,采用溶液培养法,待幼苗生长到2叶时,用不同浓度的聚乙二醇6000(PEG-6000)模拟干旱胁迫,比较大麦蜡粉缺失突变体和野生型幼苗的生理生化指标响应及10个蜡质相关基因的表达情况。结果表明:在干旱胁迫下,超氧化物歧化酶、过氧化物酶活性先上升后下降,脯氨酸含量持续上升,丙二醛含量上升,表明大麦蜡粉的缺失会降低其抗旱能力。选取的10个蜡质基因中,P1相对于ZJU3有6个基因表达下调,3个基因表达上调,1个基因表达未见明显差异。本研究初步揭示了蜡粉缺失突变体的特性及野生型较蜡粉缺失突变体在抗旱性上的优势。

关键词: 大麦干旱胁迫生理生化指标蜡质基因表达模式    
Abstract:

The wild-type (WT) barley ZJU3 and wax-deficient mutant P1 were used as experimental materials. Using the solution culture methods, when the seedlings growing to two leaves, drought stress was simulated by different concentrations of PEG (macrogol)-6000 to compare the physiological and biochemical indexes of the mutant and wild type seedlings. At the same time, the expressions of 10 waxy-related genes were detected by real-time polymerase chain reaction (PCR). The results showed that under drought stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) increased first and then decreased, and the proline (Pro) content increased continuously, and the malondialdehyde (MDA) content increased, indicating that the loss of barley wax powder would reduce its drought resistance. Among the 10 waxy genes selected, P1 had six down-regulated genes with respect to ZJU3, and three genes were up-regulated. Only one gene expression was not significantly different. The study preliminarily reveals the characteristics of the mutant and its advantages in drought resistance.

Key words: barley    drought stress    physiological and biochemical index    waxy gene    expression pattern
收稿日期: 2018-02-01 出版日期: 2019-03-28
CLC:  S 512.3  
基金资助: 国家自然科学基金(31401316);浙江省自然科学基金(LY14C130007);杭州市科委农业科研项目(20140432B03)
通讯作者: 张晓勤,薛大伟     E-mail: 1074137182@qq.com;xiaoqinzhang@163.com;dwxue@126.com
作者简介: 郑好https://orcid.org/0000-0002-0158-4613)|张晓勤(https://orcid.org/0000-0002-9607-579X)|薛大伟(https://orcid.org/0000-0001-9904-7615
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑好
吕夏晨
谭赛琼
路雪丽
张弦
张晓勤
薛大伟

引用本文:

郑好,吕夏晨,谭赛琼,路雪丽,张弦,张晓勤,薛大伟. 干旱胁迫下大麦蜡质缺失突变体的生理生化指标及蜡质基因表达[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 8-13.

Hao ZHENG,Xiachen Lü,Saiqiong TAN,Xueli LU,Xian ZHANG,Xiaoqin ZHANG,Dawei XUE. Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 8-13.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2018.02.012        http://www.zjujournals.com/agr/CN/Y2019/V45/I1/8

引物名称

Primer name

正向引物序列(5′→3′)

Forward primer sequence (5′→3′)

反向引物序列(5′→3′)

Reverse primer sequence (5′→3′)

FISH10-F/RGCAGTTCCGCAGGCTCTTCTCCTTGTTGCTCCCATCCC
CER60-F/RTCGGCTTCGGCTCCGGGTTCACGGGGTAGCGGTGGACGCA
DWA1-F/RGTGCTTGCTTCTATGAAACTGATTTGACTCCACTCGTTGACA
MYB94-F/RGCCCAGTCCCTGCGTCCATGCCGCGTTCTCAGCTCCC
CER6-F/RTAGCAGACGGGCGATGGAAGTTGGCGCTCATACACGGG
WIN1-F/RCGGGAAAGGCAATGTGGTGCTTCAAGAGCAGGTAGAC
WRKY57-F/RCCAACCGCTCAAAACCCTCTGGCTGTGTAGCTCGCAACTT
CER10-F/RACCCCCGCCATAGGTTCCAGGACACGACGGAGACCTTCAT
WIN2-F/RTTTCTCGACCAGCAGCCCCCTTCAGTTGCCCGGCACGACC
LACS1-F/RGCATGGTTTTAGTTATCAGTCGTGCTAGGTCCCAGTGTTTC
Actin-F/RTGGATCGGAGGGTCCATCCTGCACTTCCTGTGGACGATCGCTG
表1  大麦蜡质合成相关基因引物
图 1  干旱胁迫下大麦幼苗的抗氧化酶活性
图2  干旱胁迫下大麦幼苗的Pro和MDA含量
图 3  干旱胁迫下苗期无蜡粉突变体P1与野生型ZJU3蜡质基因表达情况
1 柯贞进,尹美强,温银元等.干旱胁迫下聚丙烯酰胺浸种对谷子种子萌发及幼苗期抗旱性的影响.核农学报,2015,29(3):563-570.
KEZ J, YINM Q, WENY Y, et al. Effects of polyacrylamide seed soaking on seed germination and drought resistance of millet (Setaria italica) seedings under drought stress. Journal of Nuclear Agricultural Sciences, 2015,29(3):563-570. (in Chinese with English abstract)
2 SCHULTED, CLOSET J, GRANERA, et al. The international barley sequencing consortium:at the threshold of efficient access to the barley genome. Plant Physiology, 2009,149:142-147.
3 XUED W, ZHANGX Q, LUX L, et al. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science, 2017,8:621.
4 张海禄,齐军仓,王祥军.干旱胁迫对大麦叶片表皮蜡质含量及主要生理指标的影响.麦类作物学报,2012,32(2):280-283.
ZHANGH L, QIJ C, WANGX J. Effects of water stress on epicuticular wax content and main physiological parameters of barley. Journal of Triticeae Crops, 2012,32(2):280-283. (in Chinese with English abstract)
5 BOURDENXB, BERNARDA, DOMERGUEF, et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology, 2011,156(1):29-45.
6 张晓勤,薛大伟,周伟辉,等.用甲基磺酸乙酯(EMS)诱变的大麦浙农大3号突变体的筛选和鉴定.浙江大学学报(农业与生命科学版),2011,37(2):169-174.
ZHANGX Q, XUED W, ZHOUW H, et al. Screening and identification of the mutants from two-row barley cultivar ZJU3 induced by ethyl methanesulfonate (EMS). Journal of Zhejiang University (Agriculture and Life Sciences), 2011,37(2):169-174. (in Chinese with English abstract)
7 朱双艳.大麦幼苗叶片表皮蜡质沉积与膜脂过氧化的关系及其对表皮透性影响的研究.新疆,石河子:石河子大学,2014:1-10.
ZHUS Y. Study on the relationship of epicuticular wax deposition and membrane peroxidation in barley seeding leaves and its impacts on epidermal permeability. Shihezi,Xinjiang Uyghur Autonomous Region: Shihezi University, 2014:1-10. (in Chinese with English abstract)
8 SINGHT N, ASPINALLD, PALEGL G. Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature New Biology, 1972,236(67):188-190.
9 刘训财,陈华锋,井立文,等.盐胁迫对中国春-百萨燕麦草双二倍体SOD、CAT活性和MDA含量的影响.安徽农学通报,2009,15(8):43-46.
LIUX C, CHENH F, JINGL W, et al. Effects of salt stress on SOD/CAT activities and malondialdehyde (MDA) content of Triticum aestivum Thinopyrum bessarabicum diploid. Anhui Agricultural Science Bulletin, 2009,15(8):43-46. (in Chinese with English abstract)
10 SALINM L. Toxic oxygen species and protective systems of the chloroplast. Physiologia Plantarum, 1988,72(3):681-689.
11 余玲,王彦荣,GARNETTT,等.紫花苜蓿不同品种对干旱胁迫的生理响应.草业学报,2006,15(3):75-85.
YUL, WANGY R, GARNETTT, et al. A study on physiological responses of varieties of Medicago sativa and their relationship with the drought resistance capacity under drought stress. Acta Prataculturae Sinica, 2006,15(3):75-85. (in Chinese with English abstract)
12 李予霞,崔百明,董新平,等.PEG处理下葡萄试管苗脯氨酸及内源ABA含量变化的研究.石河子大学学报(自然科学版),2004,22(1):43-45.
LIY X, CUIB M, DONGX P, et al. A study on proline and ABA content changes under water stress induced by PEG. Journal of Shihezi University (Natural Science), 2004,22(1):43-45. (in Chinese with English abstract)
13 LEE S B, JUNGS J, GO Y S, et al. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis but differentially controlled by osmotic stress. Plant Journal, 2009(60):462-475.
14 DUBOSC, STRACKER, GROTEWOLDE, et al. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010,15(10):573-581.
15 ZHAOL, KATAVICV, LIF, et al. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. The Plant Journal, 2010,64(6):1048-1058.
16 ZHUX Y, XIONGL Z. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(44):17790-17795.
17 BROUNP, POINDEXTERP, OSBORNEE. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(3):4706-4711.
18 SCHNURRJ, SHOCKEYJ, BROWSEJ. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004,16(3):629-642.
19 ZHENGH Q, ROWLANDO, KUNSTL. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long chain-fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 2005,17:1467-1481.
20 LANGERT. AAA proteases: cellular machines for degrading membrane proteins. Trends in Biochemical Sciences, 2000,25(5):247-251.
[1] 邵珊璐, 杨丽芝, 陶晨悦, 何安国, 应叶青. 多效唑对毛竹实生苗抗旱性的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 565-572.
[2] 潘伟槐, 潘建伟, 寿建昕, 郭天荣, 莫亿伟. 铝毒对不同耐铝性大麦品种初生根的影响差异[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 335-342.
[3] BEGUM Mahfuj Ara, 史肖肖, 白月亮, 蒋艳冬, 周文武, 毛存贵, 祝增荣. 水稻丝氨酸棕榈酰转移酶的分子克隆、特征及其与褐飞虱抗性相关的基因表达(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 365-372.
[4] 王一航,赵路遥,王国明,朱爱意. 舟山新木姜子幼苗对干旱胁迫的生理响应[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 543-551.
[5] 许抗抗,丁天波,严毅,李灿,杨文佳. CO2气调胁迫下烟草甲谷胱甘肽S-转移酶基因的表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 599-607.
[6] 辛福梅,贾黎明,杨小林,臧建成. 干旱胁迫对拉萨半干旱河谷主要灌木树种耗水及光合的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 617-.
[7] 辛福梅,杨小林,赵垦田,罗桑卓玛. 干旱胁迫对拉萨半干旱河谷主要乔木树种幼树耗水及光合特性的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 199-208.
[8] 余航,刘苏,朱晴子,周文武,梁庆梅,史肖肖,祝梓杰,祝增荣. 白背飞虱细胞色素P450还原酶基因的分子特征与表达模式分析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 391-400.
[9] 许庆龙,刘晓敏,徐小兵,李晴晴,张红,肖家欣. 4种丛枝菌根真菌对南高丛蓝莓抗旱性的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 427-434.
[10] 朱波, 曾建斌, 吴德志, 蔡圣冠, 杨丽娜, 张国平*. 青藏高原一年生野生大麦耐低钾种质的鉴定及其生理特性(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 165-174.
[11] 杨丽娜, 胡宏亮, 朱波, 金晓丽, 邬飞波, 张国平*. 西藏野生大麦与栽培大麦氮利用效率的基因型差异(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 155-164.
[12] 郭天荣*, 潘伟槐. 喷施6-糠氨基嘌呤对铝胁迫大麦幼苗的缓解效应[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 709-714.
[13] . 干旱胁迫对4种砧木樱桃嫁接苗光合生理的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 585-592.
[14] 项延军,李新芝,王小德. 5种藤本植物的抗寒性研究初探[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 421-424.
[15] 张晓勤,薛大伟,周伟辉,邬飞波,张国平. 用甲基磺酸乙酯(EMS)诱变的大麦浙农大3号突变体的筛选和鉴定[J]. 浙江大学学报(农业与生命科学版), 2011, 37(2): 169-174.