Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (6): 677-686    DOI: 10.3785/j.issn.1008-9209.2020.06.011
数量遗传与生物信息     
白菜PRX基因家族的鉴定与生物信息学分析
陈国户(),王浩,李广,唐小燕,汪承刚,张磊,侯金锋,袁凌云
安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,合肥 230036
Genome-wide identification and bioinformatics analysis of PRX gene family in Brassica rapa
Guohu CHEN(),Hao WANG,Guang LI,Xiaoyan TANG,Chenggang WANG,Lei ZHANG,Jinfeng HOU,Lingyun YUAN
Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
 全文: PDF(10617 KB)   HTML
摘要:

为深入研究白菜(Brassica rapa)第Ⅲ类过氧化物酶(class Ⅲ peroxidases, PRX)家族基因(BrPRX)的相关功能,通过全基因组分析技术鉴定其家族成员,并对其进行生物信息学分析。结果表明:白菜基因组共有121个PRX基因,含有0~9个数量不等的内含子,在染色体上呈不均等分布,并有多对基因串联重复;系统进化树分析将白菜与拟南芥PRX家族基因分成5个簇;共线性与Ka/Ks分析表明,白菜和拟南芥之间有较高的同源性,且大部分BrPRX家族基因在进化中受到纯化选择;顺式作用调控元件分析发现,8个BrPRX基因与激素响应调节、光响应和抗逆等相关;此外,转录组数据表明,BrPRX基因具有组织表达特异性,且部分BrPRX基因在雄性不育材料中下调表达。上述研究结果为进一步研究白菜PRX基因功能奠定了基础。

关键词: 白菜过氧化物酶全基因组鉴定转录组分析    
Abstract:

In order to further study the functions of class Ⅲ peroxidase (PRX) family genes in Brassica rapa (BrPRX), the BrPRX was identified by genome-wide analysis, and its bioinformatics analysis was carried out. The results showed that there were a total of 121 BrPRX members, contained 0-9 introns, exhibited unequal distribution on chromosomes, and multiple pairs of BrPRX genes were distributed on chromosomes with tandem duplication. Phylogenetic analysis of PRX family genes from Arabidopsis thaliana and B. rapa suggested that these members could be divided into five groups. Synteny and Ka/Ks analyses demonstrated that B. rapa had a high homology with A. thaliana, and most of BrPRX family gene had undergone strong purifying selection in the evolution. The analysis of cis-acting regulatory elements of BrPRX family genes showed that they played important roles in hormone response regulation, light response and resistance to adversity. In addition, transcriptome data analysis showed that the BrPRX genes had tissue expression specificity, and some of them were down-regulated in the male sterility materials. These results lay a foundation for the further study of PRX genes’ function in B. rapa.

Key words: Brassica rapa    peroxidase    genome-wide identification    transcriptome analysis
收稿日期: 2020-06-01 出版日期: 2020-12-31
CLC:  S 634.1  
基金资助: 国家自然科学基金(31801853);高校优秀青年骨干人才培育资助项目(gxgnfx2019001);安徽省博士后基金(2019B320);安徽省自然科学基金(2008085QC156)
通讯作者: 陈国户     E-mail: cgh@ahau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈国户
王浩
李广
唐小燕
汪承刚
张磊
侯金锋
袁凌云

引用本文:

陈国户,王浩,李广,唐小燕,汪承刚,张磊,侯金锋,袁凌云. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 677-686.

Guohu CHEN,Hao WANG,Guang LI,Xiaoyan TANG,Chenggang WANG,Lei ZHANG,Jinfeng HOU,Lingyun YUAN. Genome-wide identification and bioinformatics analysis of PRX gene family in Brassica rapa. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 677-686.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.06.011        http://www.zjujournals.com/agr/CN/Y2020/V46/I6/677

图1  BrPRX家族基因的染色体定位
图2  BrPRX家族基因保守基序及基因结构分析
图3  白菜和拟南芥PRX家族基因系统进化分析
图4  BrPRX家族基因的共线性图谱
图5  白菜与拟南芥PRX家族基因的共线性图谱Chr1~5:拟南芥的染色体编号;A01~10:白菜的染色体编号。
图6  BrPRX家族基因在不同组织中的转录组表达分析
图7  BrPRX家族差异表达基因在雄性不育材料中的转录组表达(A)与维恩图(B)分析
1 PASSARDI F, COSIO C, PENEL C, et al. Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 2005,24(5):255-265. DOI:10.1007/s00299-005-0972-6
doi: 10.1007/s00299-005-0972-6
2 ALMAGRO L, GóMEZ ROS L V, BELCHI-NAVARRO S, et al. Class Ⅲ peroxidases in plant defence reactions. Journal of Experimental Botany, 2009,60(2):377-390. DOI:10.1093/jxb/ern277
doi: 10.1093/jxb/ern277
3 魏崃,张丽,王伟威,等.大豆过氧化物酶Ⅲ的生物信息学分析.分子植物育种,2015,13(11):2453-2460. DOI:10.13271/j.mpb.013.002453
WEI L, ZHANG L, WANG W W, et al. Bioinformatics analysis of class Ⅲ peroxidases in Glycine max. Journal of Molecular Plant Breeding, 2015,13(11):2453-2460. (in Chinese with English abstract)
doi: 10.13271/j.mpb.013.002453
4 高正银,孙文杰,宋晓云,等.雷蒙德棉第Ⅲ类过氧化物酶全基因组鉴定和表达分析.生物技术进展,2019,9(5):490-501. DOI:10.19586/j.2095-2341.2019.0043
GAO Z Y, SUN W J, SONG X Y, et al. Genome-wide identification and expression pattern analysis of class Ⅲ peroxidase family in Gossypium raimondii. Journal of Current Biotechnology, 2019,9(5):490-501. (in Chinese with English abstract)
doi: 10.19586/j.2095-2341.2019.0043
5 PASSARDI F, PENEL C, DUNAND C. Performing the paradoxical: How plant peroxidases modify the cell wall. Trends in Plant Science, 2004,9(11):534-540. DOI:10.1016/j.tplants.2004.09.002
doi: 10.1016/j.tplants.2004.09.002
6 WU Y S, YANG Z L, HOW J Y, et al. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Molecular Biology, 2017,95(1/2):157-168. DOI:10.1007/s11103-017-0644-2
doi: 10.1007/s11103-017-0644-2
7 LORENTE F, LóPEZ-COBOLLO R M, CATALá R, et al. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. The Plant Journal, 2002,32(1):13-24.
8 COEGO A, RAMIREZ V, ELLUL P, et al. The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. The Plant Journal, 2005,42(2):283-293. DOI:10.1111/j.1365-313X.2005.02372.x
doi: 10.1111/j.1365-313X.2005.02372.x
9 CHOI H W, KIM Y J, LEE S C. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiology, 2007,145(3):890-904. DOI:10.1104/pp.107.103325
doi: 10.1104/pp.107.103325
10 彭方林,王丽,穆春,等.萝卜过氧化物酶基因rsprx1对其抗氧化能力的影响.贵州农业科学,2014,42(9):40-42, 47.
PENG F L, WANG L, MU C, et al. Effect of peroxidase gene rsprx1 on antioxidant ability in Raphanus sativus. Guizhou Agricultural Sciences, 2014,42(9):40-42, 47. (in Chinese with English abstract)
11 TOGNOLLI M, PENEL C, GREPPIN H, et al. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana. Gene, 2002,288(1/2):129-138. DOI:10.1016/S0378-1119(02)00465-1
doi: 10.1016/S0378-1119(02)00465-1
12 DUROUX L, WELINDER K G. The peroxidase gene family in plants: a phylogenetic overview. Journal of Molecular Evolution, 2003,57(4):397-407. DOI:10.1007/s00239-003-2489-3
doi: 10.1007/s00239-003-2489-3
13 CAO Y P, HAN Y H, MENG D D, et al. Structural, evolutionary, and functional analysis of the Class Ⅲ peroxidase gene family in Chinese pear (Pyrus bretschneideri). Frontiers in Plant Science, 2016,7:1874. DOI:10.3389/fpls.2016.01874
doi: 10.3389/fpls.2016.01874
14 WANG X W, WANG H Z, WANG J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011,43(10):1035-1039. DOI:10.1038/ng.919
doi: 10.1038/ng.919
15 BAIROCH A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research, 2000,28(1):45-48. DOI:10.1093/nar/28.1.45
doi: 10.1093/nar/28.1.45
16 LETUNIC I, DOERKS T, BORK P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research, 2014,43(D1):D257-D260. DOI:10.1093/nar/gku949
doi: 10.1093/nar/gku949
17 FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 2016,44(D1):D279-D285. DOI:10.1093/nar/gkv1344
doi: 10.1093/nar/gkv1344
18 JONES P, BINNS D, CHANG H Y, et al. InterProScan5: genome-scale protein function classification. Bioinformatics, 2014,30(9):1236-1240.
19 TONG C B, WANG X W, YU J Y, et al. Comprehensive analysis of RNA-Seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics, 2013,14:689. DOI:10.1186/1471-2164-14-689
doi: 10.1186/1471-2164-14-689
20 ZHOU X, LIU Z Y, JI R Q, et al. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Molecular Genetics and Genomics, 2017,292(5):967-990. DOI:10.1007/s00438-017-1324-2
doi: 10.1007/s00438-017-1324-2
21 CHEN G H, YE X Y, ZHANG S Y, et al. Comparative transcriptome analysis between fertile and CMS flower buds in Wucai (Brassica campestris L.). BMC Genomics, 2018,19:908. DOI:10.1186/s12864-018-5331-4
doi: 10.1186/s12864-018-5331-4
22 TAN C, LIU Z Y, HUANG S G, et al. Pectin methylesterase inhibitor (PMEI) family can be related to male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Molecular Genetics and Genomics, 2018,293:343-357. DOI:10.1007/s00438-017-1391-4
doi: 10.1007/s00438-017-1391-4
23 TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010,28(5):511-515. DOI:10.1038/nbt.1621
doi: 10.1038/nbt.1621
24 CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020,13:009. DOI:10.1016/j.molp.2020.06.009
doi: 10.1016/j.molp.2020
25 GASTEIGER E, GATTIKER A, HOOGLAND C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 2003,31(13):3784-3788. DOI:10.1093/nar/gkg563
doi: 10.1093/nar/gkg563
26 BAILEY T L, BODEN M, BUSKE F A, et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Research, 2009,37():W202-W208. DOI:10.1093/nar/gkp335
doi: 10.1093/nar/gkp335
27 LESCOT M, DéHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002,30(1):325-327. DOI:10.1093/nar/30.1.325
doi: 10.1093/nar/30.1
28 HU B, JIN J, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015,31(8):1296-1297. DOI:10.1093/bioinformatics/btu817
doi: 10.1093/bioinformatics/btu817
29 WANG D P, ZHANG Y B, ZHANG Z, et al. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics & Bioinformatics, 2010,8(1):77-80. DOI:10.1016/S1672-0229(10)60008-3
doi: 10.1016/S1672-0229(10)60008-3
30 LYSAK M A, KOCH M A, PECINKA A, et al. Chromosome triplication found across the tribe Brassiceae. Genome Research, 2005,15(4):516-525. DOI:10.1101/gr.3531105
doi: 10.1101/gr.3531105
31 SAHA G, PARK J I, JUNG H J, et al. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genomics, 2015,16:178. DOI:10.1186/s12864-015-1349-z
doi: 10.1186/s12864-015-1349-z
32 TANG J, WANG F, HOU X L, et al. Genome-wide fractionation and identification of WRKY transcription factors in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals collinearity and their expression patterns under abiotic and biotic stresses. Plant Molecular Biology Reporter, 2014,32(4):781-795. DOI:10.1007/s11105-013-0672-2
doi: 10.1007/s11105-013-0672-2
33 WANG Y, WANG Q Q, ZHAO Y, et al. Systematic analysis of maize class Ⅲ peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015,566(1):95-108. DOI:10.1016/j.gene.2015.04.041
doi: 10.1016/j.gene.2015.04.041
34 HAN Y H, DING T, SU B, et al. Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize. International Journal of Molecular Sciences, 2016,17(2):161. DOI:10.3390/ijms17020161
doi: 10.3390/ijms170
35 WANG Y Y, FENG L, ZHU Y X, et al. Comparative genomic analysis of the WRKY gene family in populus, grape, Arabidopsis and rice. Biology Direct, 2015,10:48. DOI:10.1186/s13062-015-0076-3
doi: 10.1186/s13062-015-0076-3
[1] 张沛宇,王帆帆,林琼,段玉权. 纳米SiO2和聚乳酸/己二酸-对苯二甲酸-丁二酯共聚物复合材料包装袋对小白菜货架期品质的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 93-100.
[2] 龚小霞,李超,曹曦月,杨诚诚,黄超. 人叉头转录因子O亚型6真核表达载体的构建及其对胶质瘤细胞存活的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 619-625.
[3] 周旋,丁俊山,吴良欢,陆若辉,杨国标,王旭. 不同工艺复合肥对小白菜产量和品质的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 626-.
[4] 陶晓亚, 李家寅, 茅林春. 脱落酸对采后番茄果实损伤愈合的作用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 321-326.
[5] 叶欣怡, 赵杏, 王小鹏, 钟一铭, 杨京平. 土壤亚铁、镉对水稻2种抗氧化酶和植株富集镉量的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 89-98.
[6] . 白菜上皮硫特异蛋白基因克隆与功能验证[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 535-541.
[7] 谢亚军, 陈晓萍, 倪亮, 孙新强, 石伟勇. 基于辅酶Q10 发酵液的有机液肥对小白菜生长和土壤酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(5): 545-500.
[8] 马 云,王云云,张晓婷,李 芬,王启钊,王新庄. 鸭PPARα基因结构及功能的生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 371-379.
[9] 叶明,陶涛,陈吴西. 一种解磷菌剂的研制及其应用效果[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 657-661.
[10] 蒋明 , 曹家树. 白菜花药特异基因BcACT 的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2009, 35(6): 591-598.
[11] 孙园园, 林咸永, 金崇伟, 章永松, 方萍. 氮素形态对菠菜体内抗坏血酸含量及其代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 292-298.
[12] 蒋明 曹家树. 白菜花药特异基因BcPRO的克隆及表达分析[J]. 浙江大学学报(农业与生命科学版), 2008, 34(1): 1-6.
[13] 张国庆  顾宏辉  许玲  何云  周伟军. 白菜型油菜与甘蓝杂交子房培养再生苗生根及成活率的影响因素研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 719-723.
[14] 余小林  曹家树  许立奎  齐文雯  王晓静. 优化白菜类蔬菜遗传转化体系的研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(5): 529-534.
[15] 胥保华  胡彩虹  夏枚生. 纳米硒对肉鸡肝脏谷胱甘肽过氧化物酶和脱碘酶Ⅰ活性的影响[J]. 浙江大学学报(农业与生命科学版), 2005, 31(5): 633-637.