Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (6): 647-659    DOI: 10.3785/j.issn.1008-9209.2020.03.040
综述     
脊椎动物左右不对称发育研究进展
张颖洁(),徐鹏飞()
浙江大学医学院遗传学研究所,杭州 310058
Research progress of left-right asymmetry development in vertebrates
Yingjie ZHANG(),Pengfei XU()
Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2038 KB)   HTML
摘要:

内脏器官和神经系统沿身体的左-右轴呈不对称分布是脊椎动物所共有的一个显著特征。与前-后、背-腹轴一样,左右不对称是在胚胎发育早期逐步建立起来的。目前认为,脊椎动物的左右不对称发育是由保守的Nodal-Pitx2信号诱导,其过程大致可分为对称性的打破、不对称信号通路的建立和维持以及最终组织器官的定位。本文就目前脊椎动物左右不对称发育的研究进展进行了综述,并通过小鼠、斑马鱼、爪蟾等模式生物对左-右轴建立过程的探索,帮助我们更为深入地理解这一发育过程。

关键词: 脊椎动物左右不对称早期发育Nodal信号    
Abstract:

In vertebrates, it is a remarkable feature that the internal organs and nervous system are asymmetrically distributed along the left-right axis. As same as the anterior-posterior and dorsal-ventral axes, left-right asymmetry is established progressively during the early developmental stage. Left-right asymmetry development is induced by the conserved Nodal-Pitx2 signal. The concrete process includes the breaking of the symmetry, the establishment and maintenance of asymmetric signal, and the position of the eventual organ. The recent progress in left-right asymmetry development was reviewed. And recent researches have explored the establishment of left-right axis using model organisms such as mouse, zebrafish, Xenopus, etc., which help us deeply understand this developmental process.

Key words: vertebrate    left-right asymmetry    early development    Nodal signal
收稿日期: 2020-03-04 出版日期: 2020-12-31
CLC:  Q 344  
基金资助: 国家自然科学基金(31970757)
通讯作者: 徐鹏飞     E-mail: yingjiezhang@zju.edu.cn;pengfei_xu@zju.edu.cn
作者简介: 张颖洁(https://orcid.org/0000-0003-1950-6936),E-mail:yingjiezhang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张颖洁
徐鹏飞

引用本文:

张颖洁,徐鹏飞. 脊椎动物左右不对称发育研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 647-659.

Yingjie ZHANG,Pengfei XU. Research progress of left-right asymmetry development in vertebrates. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 647-659.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.03.040        http://www.zjujournals.com/agr/CN/Y2020/V46/I6/647

图1  由左右组织者启动的左右不对称发育模式图A. 液体流向下游基因网络的信号转导;B. Nodal信号通路的建立。L:左;R:右;ICOs:纤毛内钙振动;L-LPM:左侧板中胚层;R-LPM:右侧板中胚层。
图2  鸡胚胎的左右不对称发育模式图A. 鸡胚胎左右组织者处细胞重排引起的对称打破;B. 鸡胚胎中左右不对称信号通路的建立。L:左;R:右;L-LPM:左侧板中胚层; R-LPM:右侧板中胚层;节点:亨氏结(鸡的左右组织者)。

物种

Species

左右组织者

Left-right

organizer

肌动球蛋白参与介导

Actomyosin involved

Nodal信号

Nodal signal

形态学特征

Morphological characteristic

脊椎动物

Vertebrate

人 Human存在未知存在内脏器官以及神经系统沿左-右轴不对称分布
鼠 Mouse存在未知存在
兔 Rabbit存在未知存在
鸡 Chicken不存在未知存在
斑马鱼 Zebrafish存在存在存在
爪蟾 Xenopus存在存在存在

无脊椎动物

Invertebrate

蜗牛 Snail不存在未知存在螺旋式卵裂(左旋或右旋),贝壳的螺旋
线虫 Nematode不存在存在不存在左右两侧味觉感受神经元的分化
果蝇 Drosophila不存在存在不存在肠及性腺的环化
表1  几种重要的脊椎动物及无脊椎动物左右不对称发育机制
1 BLUM M, FEISTEL K, THUMBERGER T, et al. The evolution and conservation of left-right patterning mechanisms. Development, 2014,141(8):1603-1613. DOI:10.1242/dev.100560
doi: 10.1242/dev.100560
2 TUAZON F B, MULLINS M C. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Seminars in Cell and Developmental Biology, 2015,42:118-133. DOI:10.1016/j.semcdb.2015.06.003
doi: 10.1016/j.semcdb.2015.06.003
3 ZINSKI J, TAJER B, MULLINS M C. TGF-β family signaling in early vertebrate development. Cold Spring Harbor Perspectives in Biology, 2018,10(6):a033274. DOI:10.1101/cshperspect.a033274
doi: 10.1101/cshperspect.a033274
4 NAMIGAI E K O, KENNY N J, SHIMELD S M. Right across the tree of life: the evolution of left-right asymmetry in the Bilateria. Genesis, 2014,52(6):458-470. DOI:10.1002/dvg.22748
doi: 10.1002/dvg.22748
5 TISLER M, WETZEL F, MANTINO S, et al. Cilia are required for asymmetric nodal induction in the sea urchin embryo. BMC Development Biology, 2016,16(1):28. DOI:10.1186/s12861-016-0128-7
doi: 10.1186/s12861-016-0128-7
6 SPEDER P, PETZOLDT A G, SUZANNE M, et al. Strategies to establish left/right asymmetry in vertebrates and invertebrates. Current Opinion in Genetics and Development, 2007,17(4):351-358. DOI:10.1016/j.gde.2007.05.008
doi: 10.1016/j.gde.2007.05.008
7 GROS J, FEISTEL K, VIEBAHN C, et al. Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science, 2009,324(5929):941-944. DOI:10.1126/science.1172478
doi: 10.1126/science.1172478
8 LEVIN M, JOHNSON R L, STERN C D, et al. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell, 1995,82(5):803-814. DOI:10.1016/0092-8674(95)90477-8
doi: 10.1016/0092-8674(95)90477-8
9 HIROKAWA N. Stirring up development with the heterotrimeric kinesin KIF3. Traffic, 2000,1(1):29-34. DOI:10.1034/j.1600-0854.2000.010105.x
doi: 10.1034/j.1600-0854.2000.010105.x
10 ESSNER J J, VOGAN K J, WAGNER M K, et al. Conserved function for embryonic nodal cilia. Nature, 2002,418(6893):37-38. DOI:10.1038/418037a
doi: 10.1038/418037a
11 OKADA Y, TAKEDA S, TANAKA Y, et al. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell, 2005,121(4):633-644. DOI:10.1016/j.cell.2005.04.008
doi: 10
12 ESSNER J J, AMACK J D, NYHOLM M K, et al. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development, 2005,132(6):1247-1260. DOI:10.1242/dev.01663
doi: 10.1242/dev.01663
13 SCHWEICKERT A, WEBER T, BEYER T, et al. Cilia-driven leftward flow determines laterality in Xenopus. Current Biology, 2007,17(1):60-66. DOI:10.1016/j.cub.2006.10.067
doi: 10.1016/j.cub.2006.10.067
14 RASHBASS P, COOKE L A, HERRMANN B G, et al. A cell autonomous function of Brachyury in T/T embryonic stem cell chimaeras. Nature, 1991,353(6342):348-351. DOI:10.1038/353348a0
doi: 10.1038/353348a0
15 HAGOS E G, DOUGAN S T. Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Development Biology, 2007,7:22. DOI:10.1186/1471-213X-7-22
doi: 10.1186/1471-213X-7-22
16 BLUM M, SCHWEICKERT A, VICK P, et al. Symmetry breakage in the vertebrate embryo: When does it happen and how does it work? Development Biology, 2014,393(1):109-123. DOI:10.1016/j.ydbio.2014.06.014
doi: 10.1016/j.ydbio.2014.06.014
17 GOURRONC F, AHMAD N, NEDZA N, et al. Nodal activity around Kupffer’s vesicle depends on the T-box transcription factors notail and spadetail and on notch signaling. Development Dynamics, 2007,236(8):2131-2146. DOI:10.1002/dvdy.21249
doi: 10.1002/dvdy.21249
18 POGODA H M, SOLNICA-KREZEL L, DRIEVER W, et al. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Current Biology, 2000,10(17):1041-1049. DOI:10.1016/s0960-9822(00)00669-2
doi: 10.1016/s0960-9822(00)00669-2
19 WANG L, LIU Z B, LIN H, et al. Epigenetic regulation of left-right asymmetry by DNA methylation. The EMBO Journal, 2017,36(20):2987-2997. DOI:10.15252/embj.201796580
doi: 10.15252/embj.20179
20 LIU J W, ZHU C K, NING G Z, et al. Chemokine signaling links cell-cycle progression and cilia formation for left-right symmetry breaking. PLoS Biology, 2019,17(8):e3000203. DOI:10.1101/578351
doi: 10.1101/578351
21 GRIMES D T, BURDINE R D. Left-Right patterning: breaking symmetry to asymmetric morphogenesis. Trends in Genetics, 2017,33(9):616-628. DOI:10.1016/j.tig.2017.06.004
doi: 10.1016/j.tig.2017.06.004
22 DASGUPTA A, AMACK J D. Cilia in vertebrate left-right patterning. Philosophical Transactions of the Royal Society B, 2016,371(1710):20150410. DOI:10.1098/rstb.2015.0410
doi: 10.1098/rstb.2015.0410
23 NONAKA S, TANAKA Y, OKADA Y, et al. Randomization of left-right asymmetry due to loss of Nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 1998,95(6):829-837. DOI:10.1016/S0092-8674(00)80067-7
doi: 10.1016/S0092-8674(00)80067-7
24 MARSZALEK J R, RUIZLOZANO P, ROBERTS E, et al. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-Ⅱ. PNAS, 1999,96(9):5043-5048.
25 SUPP D M, BRUECKNER M, KUEHN M R, et al. Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development, 1999,126(23):5495-5504.
26 STUBBS J L, OISHI I, BELMONTE J C, et al. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nature Genetics, 2008,40(12):1454-1460. DOI:10.1038/ng.267
doi: 10.1038/ng.267
27 TIAN T, ZHAO L, ZHANG M, et al. Both foxj1a and foxj1b are implicated in left-right asymmetric development in zebrafish embryos. Biochemical and Biophysical Research Communications, 2009,380(3):537-542. DOI:10.1016/j.bbrc.2009.01.111
doi: 10.1016/j.bbrc
28 ZHU P, XU X L, LIN X Y. Both ciliary and non-ciliary functions of Foxj1a confer Wnt/β-catenin signaling in zebrafish left-right patterning. Biology Open, 2015,4(11):1376-1386. DOI:10.1242/bio.012088
doi: 10.1242/bio.012088
29 KULKARNI S S, KHOKHA M K. WDR5 regulates left-right patterning via chromatin-dependent and independent functions. Development, 2018,145(23):dev159889. DOI:10.1242/
dev.159889
doi: 10.1242/
30 TANAKA Y, OKADA Y, HIROKAWA N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature, 2005,435(7039):172-177. DOI:10.1038/nature03494
doi: 10.1038/nature03494
31 CHOCRON S, VERHOEVEN M C, RENTZSCH F, et al. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Developmental Biology, 2007,305(2):577-588. DOI:10.1016/j.ydbio.2007.03.001
doi: 10.1016/j.ydbio.2007.03.001
32 LOPES S S, LOURENCO R, PACHECO L, et al. Notch signalling regulates left-right asymmetry through ciliary length control. Development, 2010,137(21):3625-3632. DOI:10.1242/dev.054452
doi: 10.1242/dev.054452
33 HASHIMOTO M, SHINOHARA K, WANG J, et al. Planar polarization of node cells determines the rotational axis of node cilia. Nature Cell Biology, 2010,12(2):170-176. DOI:10.1038/ncb2020
doi: 10
34 ANTIC D, STUBBS J L, SUYAMA K, et al. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS ONE, 2010,5(2):e8999. DOI:10.1371/journal.pone.0008999
doi: 10.1371/journal.pone.0008999
35 BOROVINA A, SUPERINA S, VOSKAS D, et al. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nature Cell Biology, 2010,12(4):407-412. DOI:10.1038/ncb2042
doi: 10.1038/ncb2042
36 SONG H, HU J X, CHEN W, et al. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature, 2010,466(7304):378-382. DOI:10.1038/nature09129
doi: 10.1038/nature09129
37 MINEGISHI K, HASHIMOTO M, AJIMA R, et al. A Wnt5 activity asymmetry and intercellular signaling via PCP proteins polarize node cells for left-right symmetry breaking. Development Cell, 2017,40(5):439-452. DOI:10.1016/j.devcel.2017.02.010
doi: 10.1016/j.devcel
38 WANG G, CADWALLADER A B, JANG D S, et al. The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development, 2011,138(1):45-54. DOI:10.1242/dev.052985
doi: 10.1242/dev.052985
39 WANG G, MANNING M L, AMACK J D. Regional cell shape changes control form and function of Kupffer’s vesicle in the zebrafish embryo. Developmental Biology, 2012,370(1):52-62. DOI:10.1016/j.ydbio.2012.07.019
doi: 10.1016/j.ydbio.2012.07.019
40 TAVARES B, JACINTO R, SAMPAIO P, et al. Notch/Her12 signalling modulates, motile/immotile cilia ratio downstream of Foxj1a in zebrafish left-right organizer. eLife, 2017,6:e25165. DOI:10.7554/eLife.25165
doi: 10.7554/eLife.25165
41 FUKUMOTO T, KEMA I P, LEVIN M. Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Current Biology, 2005,15(9):794-803. DOI:10.1016/j.cub.2005.03.044
doi: 10.1016/j.cub.2005.03.044
42 AW S, KOSTER J C, PEARSON W, et al. The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos. Developmental Biology, 2010,346(1):39-53. DOI:10.1016/j.ydbio.2010.07.011
doi: 10.1016/j.ydbio.2010.07.011
43 ADAMS D S, ROBINSON K R, FUKUMOTO T, et al. Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development, 2006,133(9):1657-1671. DOI:10.1242/dev.02341
doi: 10.1242/dev.02
44 VANDENBERG L N, MORRIE R D, SEEBOHM G, et al. Rab GTPases are required for early orientation of the left-right axis in Xenopus. Mechanisms of Development, 2013,130(4):254-271. DOI:10.1016/j.mod.2012.11.007
doi: 10.1016/j.mod.2012.11.007
45 MCGRATH J, SOMLO S, MAKOVA S, et al. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell, 2003,114(1):61-73. DOI:10.1016/s0092-8674(03)00511-7
doi: 10.1016/s0092-8674(03)00511-7
46 TABIN C J, VOGAN K J. A two-cilia model for vertebrate left-right axis specification. Genes and Development, 2003,17(1):1-6. DOI:10.1101/gad.1053803
doi: 10.1101/gad.1053803
47 YUAN S, ZHAO L, BRUECKNER M, et al. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Current Biology, 2015,25(5):556-567. DOI:10.1016/j.cub.2014.12.051
doi: 10.1016/j.cub.2014
48 COLLIGNON J, VARLET I, ROBERTSON E J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature, 1996,381(6578):155-158. DOI:10.1038/381155a0
doi: 10.1038/381155a0
49 LONG S, AHMAD N, REBAGLIATI M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development, 2003,130(11):2303-2316. DOI:10.1242/dev.00436
doi: 10.1242/dev.00436
50 MARQUES S, BORGES A C, SILVA A C, et al. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes and Development, 2004,18(19):2342-2347. DOI:10.1101/gad.306504
doi: 10.1101/gad.306504
51 HASHIMOTO H, REBAGLIATI M, AHMAD N, et al. The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development, 2004,131(8):1741-1753. DOI:10.1242/dev.01070
doi: 10.1242/dev.01
52 SCHWEICKERT A, VICK P, GETWAN M, et al. The nodal inhibitor Coco is a critical target of leftward flow in Xenopus. Current Biology, 2010,20(8):738-743. DOI:10.1016/j.cub.2010.02.061
doi: 10.1016/j.cub.2010.02.061
53 NAKAMURA T, SAITO D, KAWASUMI A, et al. Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nature Communications, 2012,3(1):1322. DOI:10.1038/ncomms2319
doi: 10.1038/ncomms2319
54 RAYA A, KAWAKAMI Y, RODRIGUEZ-ESTEBAN C, et al. Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes and Development, 2003,17(10):1213-1218. DOI:10.1101/gad.1084403
doi: 10
55 KREBS L T, IWAI N, NONAKA S, et al. Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes and Development, 2003,17(10):1207-1212. DOI:10.1101/gad.1084703
doi: 10.1101/gad.1084703
56 KIRBY M L, LAWSON A, STADT H A, et al. Hensen’s node gives rise to the ventral midline of the foregut: implications for organizing head and heart development. Development Biology, 2003,253(2):175-188. DOI:10.1016/s0012-1606(02)00024-6
doi: 10.1016/s0012-1606(02)00024-6
57 YIN Y L, BANGS F, PATON I R, et al. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development, 2009,136(4):655-664. DOI:10.1242/dev.028464
doi: 10.1242/dev.028464
58 KATSU K, TOKUMORI D, TATSUMI N, et al. BMP inhibition by DAN in Hensen’s node is a critical step for the establishment of left-right asymmetry in the chick embryo. Development Biology, 2012,363(1):15-26. DOI:10.1016/j.ydbio.2011.12.015
doi: 10.1016/j.ydbio.2011.12.015
59 SCHRODER S S, TSIKOLIA N, WEIZBAUER A, et al. Paraxial nodal expression reveals a novel conserved structure of the left-right organizer in four mammalian species. Cells Tissues Organs, 2016,201(2):77-87. DOI:10.1159/000440951
doi: 10.1159/000440951
60 POHL C, BAO Z. Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis. Development Cell, 2010,19(3):402-412. DOI:10.1016/j.devcel.2010.08.014
doi: 10.1016/j.devcel
61 POHL C. Left-right patterning in the C. elegans embryo: unique mechanisms and common principles. Communicative and Integrative Biology, 2011,4(1):34-40. DOI:10.4161/cib.4.1.14144
doi: 10.4161/cib.4
62 SPéDER P, áDáM G, NOSELLI S, et al. Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature, 2006,440(7085):803-807. DOI:10.1038/nature04623
doi: 10.1038/nature04623
63 HOZUMI S, MAEDA R, TANIGUCHI K, et al. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature, 2006,440(7085):798-802. DOI:10.1038/nature04625
doi: 10.1038/nature04625
64 GONZáLE-ZMORALES N, GéMINARD C, LEBRETON G, et al. The atypical cadherin dachsous controls left-right asymmetry in Drosophila. Development Cell, 2015,33(6):675-689. DOI:10.1016/j.devcel.2015.04.026
doi: 10.1016/j.devcel.2015.04.026
65 YUAN S, BRUECKNER M. Left-right asymmetry: myosin1D at the center. Current Biology, 2018,28(9):R567-R569. DOI:10.1016/j.cub.2018.03.019
doi: 10.1016/j.cub.2018.03.019
66 LEBRETON G, GEMINARD C, LAPRAZ F, et al. Molecular to organismal chirality is induced by the conserved myosin 1D. Science, 2018,362(6417):949-952. DOI:10.1126/science.aat8642
doi: 10.1126/science.aat8642
67 TINGLER M, KURZ S, MAERKER M, et al. A conserved role of the unconventional myosin1d in laterality determination. Current Biology, 2018,28(5):810-816. DOI:10.1016/j.cub.2018.01.075
doi: 10.1016/j.cub.2018
68 JUAN T, GéMINARD C, COUTELIS J B, et al. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry. Nature Communications, 2018,9(1):1942. DOI: 10.1038/s41467-018-04284-8
doi: 10.1038/s41467-018-04284-8
69 SAYDMOHAMMED M, YAGI H, CALDERON M, et al. Vertebrate myosin 1d regulates left-right organizer morphogenesis and laterality. Nature Communications, 2018,9(1):3381. DOI:10.1038/s41467-018-05866-2
doi: 10.1038/s41467-018-05866-2
70 LOHR J L, DANOS M C, YOST H J. Left-right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development, 1997,124(8):1465-1472.
71 TADJUIDJE E, KOFRON M, MIR A, et al. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biology, 2016,6(8):150187. DOI:10.1098/rsob.150187
doi: 10.1098/rsob.150187
72 TANAKA C, SAKUMA R, NAKAMURA T, et al. Long-range action of nodal requires interaction with GDF1. Genes and Development, 2007,21(24):3272-3282. DOI:10.1101/gad.1623907
doi: 10.1101/gad.1623907
73 PETERSON A G, WANG X, YOST H J. Dvr1 transfers left-right asymmetric signals from Kupffer’s vesicle to lateral plate mesoderm in zebrafish. Development Biology, 2013,382(1):198-208. DOI:10.1016/j.ydbio.2013.06.011
doi: 10.1016/j.ydbio.2013.06.011
74 PELLICCIA J L, JINDAL G A, BURDINE R D. Gdf3 is required for robust Nodal signaling during germ layer formation and left-right patterning. eLife, 2017,6:e28635. DOI:10.7554/eLife.28635
doi: 10.7554/eLife.28635
75 MONTAGUE T G, GAGNON J A, SCHIER A F. Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development, 2018,145(24):dev171090. DOI:10.1242/dev.171090
doi: 10.1242/dev.171090
76 CONCEPCION D, HAMADA H, PAPAIOANNOU V E. Tbx6 controls left-right asymmetry through regulation of Gdf1. Biology Open, 2018,7(5):29650695. DOI:10.1242/bio.032565
doi: 10.1242/bio.03
77 OKI S, HASHIMOTO R, OKUI Y, et al. Sulfated glycosaminoglycans are necessary for Nodal signal transmission from the node to the left lateral plate in the mouse embryo. Development, 2007,134(21):3893-3904. DOI:10.1242/dev.009464
doi: 10.1242/dev.00
78 MARJORAM L, WRIGHT C. Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus. Development, 2011,138(3):475-485. DOI:10.1242/dev.056010
doi: 10.1242/dev.056010
79 ADACHI H, SAIJOH Y, MOCHIDA K, et al. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes and Development, 1999,13(12):1589-1600. DOI:10.1101/gad.13.12.1589
doi: 10.1101/gad.13.12.1589
80 SAIJOH Y, OKI S, TANAKA C, et al. Two nodal-responsive enhancers control left-right asymmetric expression of Nodal. Developmental Dynamics, 2005,232(4):1031-1036. DOI:10.1002/dvdy.20192
doi: 10.1002/dvdy.20192
81 GAIO U, SCHWEICKERT A, FISCHER A, et al. A role of the cryptic gene in the correct establishment of the left-right axis. Current Biology, 1999,9(22):1339-1342. DOI:10.1016/S0960-9822(00)80059-7
doi: 10.1016/S0960-9822(00)80059-7
82 MENO C, ITO Y, SAIJOH Y, et al. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells, 1997,2(8):513-524. DOI:10.1046/j.1365-2443.1997.1400338.x
doi: 10.1046/j.1365-2443.1997.1400338.x
83 MENO C, SHIMONO A, SAIJOH Y, et al. lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell, 1998,94(3):287-297. DOI:10.1016/S0092-8674(00)81472-5
doi: 10.1016/S0092-8674(00)81472-5
84 BURDINE R D, GRIMES D T. Antagonistic interactions in the zebrafish midline prior to the emergence of asymmetric gene expression are important for left-right patterning. Philosophical Transactions of the Royal Society B, 2016,371(1710):20150402. DOI:10.1098/rstb.2015.0402
doi: 10.1098/rstb.2015.0402
85 WANG X, YOST H J. Initiation and propagation of posterior to anterior (PA) waves in zebrafish left-right development. Developmental Dynamics, 2008,237(12):3640-3647. DOI:10.1002/dvdy.21771
doi: 10.1002/dvdy.21771
86 NAKAMURA T, MINE N, NAKAGUCHI E, et al. Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Development Cell, 2006,11(4):495-504. DOI:10.1016/j.devcel.2006.08.002
doi: 10.1016/j.devcel.2006.08.002
87 MULLER P, ROGERS K W, JORDAN B M, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science, 2012,336(6082):721-724. DOI:10.1126/science.1221920
doi: 10.1126/science.1221920
88 SMITH K A, NO?L E, THURLINGS I, et al. Bmp and Nodal independently regulate lefty1 expression to maintain unilateral nodal activity during left-right axis specification in zebrafish. PLoS Genetics, 2011,7(9):e1002289. DOI:10.1371/journal.pgen.1002289
doi: 10.1371/journal.pgen.1002289
89 PIEDRA M E, ROS M A. BMP signaling positively regulates Nodal expression during left right specification in the chick embryo. Development, 2002,129(14):3431-3440. DOI:10.1007/s00429-002-0261-x
doi: 10.1007/s00429-002-0261-x
90 TAVARES A T, ANDRADE S, SILVA A C, et al. Cerberus is a feedback inhibitor of Nodal asymmetric signaling in the chick embryo. Development, 2007,134(11):2051-2060. DOI:10.1242/dev.000901
doi: 10.1242/dev.000901
91 LOGAN M, PAGAN-WESTPHAL S M, SMITH D M, et al. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell, 1998,94(3):307-317.
92 CAMPIONE M, STEINBEISSER H, SCHWEICKERT A, et al. The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development, 1999,126(6):1225-1234.
93 GARRIC L, RONSIN B, ROUSSIGNE M, et al. Pitx2c ensures habenular asymmetry by restricting parapineal cell number. Development, 2014,141(7):1572-1579. DOI:10.1242/dev.100305
doi: 10.1242/dev.100305
94 PATTERSON M. Two-step regulation of asymmetry. Nature Reviews Genetics, 2001,2(3):157. DOI:10.1038/35056016
doi: 10.1038/35056016
95 SHIRATORI H, YASHIRO K, SHEN M M, et al. Conserved regulation and role of Pitx2 in situs-specific morphogenesis of visceral organs. Development, 2006,133(15):3015-3025. DOI:10.1242/dev.02470
doi: 10.1242/dev.02470
96 JI Y C, BUEL S M, AMACK J D. Mutations in zebrafish pitx2 model congenital malformations in Axenfeld-Rieger syndrome but do not disrupt left-right placement of visceral organs. Development Biology, 2016,416(1):69-81. DOI:10.1016/j.ydbio.2016.06.010
doi: 10
97 RAMSDELL A F. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Development Biology, 2005,288(1):1-20. DOI:10.1016/j.ydbio.2005.07.038
doi: 10.1016/j.ydbio.2005.07.038
98 ROHR S, OTTEN C, ABDELILAHSEYFRIED S. Asymmetric involution of the myocardial field drives heart tube formation in zebrafish. Circulation Research, 2008,102(2):e12-e19. DOI:10.1161/CIRCRESAHA.107.165241
doi: 10.1161/CIRCRESAHA.107.165241
99 BAKER K, HOLTZMAN N G, BURDINE R D, et al. Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. PNAS, 2008,105(37):13924-13929. DOI:10.1073/pnas.0802159105
doi: 10.1073/pnas.0802
100 AHMAD N, LONG S, REBAGLIATI M. A southpaw joins the roster: the role of the zebrafish nodal-related gene southpaw in cardiac LR asymmetry. Trends Cardiovasc Medicine, 2004,14(2):43-49. DOI:10.1016/j.tcm.2003.11.001
doi: 10.1016/j.tcm.2003.11.001
101 NOEL E S, VERHOEVEN M, LAGENDIJK A K, et al. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nature Communications, 2013,4(1):2754. DOI:10.1038/ncomms3754
doi: 10.1038/ncomms3754
102 GRIMES D T, PATTERSON V L, LUNA-ARVIZU G, et al. Left-right asymmetric heart jogging increases the robustness of dextral heart looping in zebrafish. Development Biology, 2020,459(2):79-86. DOI:10.1016/j.ydbio.2019.11.012
doi: 10.1016/j.ydbio.2019.11.012
103 RAY P, CHIN A S, WORLEY K E, et al. Intrinsic cellular chirality regulates left-right symmetry breaking during cardiac looping. PNAS, 2018,115(50):E11568-E11577. DOI:10.1073/pnas.1808052115
doi: 10.1073/pnas.1808052115
104 OCANA O H, COSKUN H, MINGUILLON C, et al. A right-handed signalling pathway drives heart looping in vertebrates. Nature, 2017,549(7670):86-90. DOI:10.1038/nature23454
doi: 10.1038/nature23454
105 RYAN A K, BLUMBERG B, RODRIGUEZ-ESTEBAN C, et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature, 1998,394(6693):545-551. DOI:10.1038/29004
doi: 10.1038/29004
106 HORNE-BADOVINAC S, REBAGLIATI M, STAINIER D Y. A cellular framework for gut-looping morphogenesis in zebrafish. Science, 2003,302(5645):662-665. DOI:10.1126/science.1085397
doi: 10.1126/science.1085397
107 DAGLE J M, SABEL J L, LITTIG J L, et al. Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopuslaevis. Development Biology, 2003,262(2):268-281. DOI:10.1016/S0012-1606(03)00389-0
doi: 10.1016/S0012-1606(03)00389-0
108 YIN C, KIKUCHI K, HOCHGREB T, et al. Hand2 regulates extracellular matrix remodeling essential for gut-looping morphogenesis in zebrafish. Development Cell, 2010,18(6):973-984. DOI:10.1016/j.devcel.2010.05.009
doi: 10.1016/j.devcel.2010.05.009
109 CONCHA M L, BURDINE R D, RUSSELL C, et al. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron, 2000,28(2):399-409. DOI:10.1016/s0896-6273(00)00120-3
doi: 10.1016/s0896-6273(00)00120-3
110 REGAN J C, CONCHA M L, ROUSSIGNE M, et al. An Fgf8-dependent bistable cell migratory event establishes CNS asymmetry. Neuron, 2009,61(1):27-34. DOI:10.1016/j.neuron.2008.11.030
doi: 10.1016/j.neuron.2008.11.030
111 IVEMARK B I. Implications of agenesis of the spleen on the pathogenesis of conotruncus anomalies in childhood; an analysis of the heart malformations in the splenic agenesis syndrome, with fourteen new cases. Acta Paediatrica, 1955,44(Suppl. 104):7-110.
112 LIN A E, TICHO B S, HOUDE K, et al. Heterotaxy: associated conditions and hospital-based prevalence in newborns. Genetics in Medicine Official Journal of the American College of Medical Genetics, 2000,2(3):157-172. DOI:10.1097/00125817-200005000-00002
doi: 10.1097/00125817-200005000-00002
113 PEETERS H, DEVRIENDT K. Human laterality disorders. European Journal of Medical Genetics, 2006,49(5):349-362. DOI:10.1016/j.ejmg.2005.12.003
doi: 10.1016/j.ejmg.2005.12.003
114 KATHIRIYA I S, SRIVASTAVA D. Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease. American Journal of Medical Genetics, 2000,97(4):271-279. DOI:10.1002/1096-8628(200024)97:4<271::aid-ajmg1277>3.0.co;2-o
doi: 10.1002/1096-8628(200024)97:4<271::aid-ajmg1277>3.0.co;2-o
115 KOSAKI K, CASEY B. Genetics of human left-right axis malformations. Seminars in Cell and Developmental Biology, 1998,9(1):89-99.
116 MERKLIN R J, VARANO N R. Situs inversus and cardiac defects. A study of 111 cases of reversed asymmetry. The Journal of Thoracic and Cardiovascular Surgery, 1963,45(3):334-342.
117 DENG H, XIA H, DENG S, et al. Genetic basis of human left-right asymmetry disorders. Expert Reviews in Molecular Medicine, 2015,16:e19. DOI:10.1017/erm.2014.22
doi: 10.1017/erm.2014.22
118 KOSAKI R, GEBBIA M, KOSAKI K, et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. American Journal of Medical Genetics, 1999,82(1):70-76.
119 BAMFORD R N, ROESSLER E, BURDINE R D, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nature Genetics, 2000,26(3):365-369. DOI:10.1038/81695
doi: 10.1038/81695
120 KARKERA J D, LEE J S, ROESSLER E, et al. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. American Journal of Human Genetics, 2007,81(5):987-994. DOI:10.1086/522890
doi: 10.1086/522890
121 MOHAPATRA B, CASEY B, LI H, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Human Molecular Genetics, 2009,18(5):861-871. DOI:10.1093/hmg/ddn411
doi: 10.1093/hmg/ddn411
122 KAASINEN E, AITTOMAKI K, ERONEN M, et al. Recessively inherited right atrial isomerism caused by mutations in growth/differentiation factor 1 (GDF1). Human Molecular Genetics, 2010,19(14):2747-2753. DOI:10.1093/hmg/ddq164
doi: 10.1093/hmg/ddq164
123 KOSAKI K, BASSI M T, KOSAKI R, et al. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. American Journal of Human Genetics, 1999,64(3):712-721.
124 ROESSLER E, OUSPENSKAIA M V, KARKERA J D, et al. Reduced nodal signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. American Journal of Human Genetics, 2008,83(1):18-29. DOI:10.1016/j.ajhg.2008.05.012
doi: 10.1016/j.ajhg.2008
125 FRANCO D, SEDMERA D, LOZANO-VELASCO E. Multiple roles of Pitx2 in cardiac development and disease. Journal of Cardiovascular Development and Disease, 2017,4(4):16. DOI:10.3390/jcdd4040016
doi: 10.3390/jcdd4040016
126 CRISTO F, INACIO J M, DE ALMEIDA S, et al. Functional study of DAND5 variant in patients with congenital heart disease and laterality defects. BMC Medical Genetics, 2017,18(1):77. DOI:10.1186/s12881-017-0444-1
doi: 10.1186/s12881-017-0444-1
127 SEMPOU E, KHOKHA M K. Genes and mechanisms of heterotaxy: patients drive the search. Current Opinion Genetics and Development, 2019,56:34-40. DOI:10.1016/j.gde.2019.05.003
doi: 10.1016/j.gde.2019
128 OTTO E A, SCHERMER B, OBARA T, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nature Genetics, 2003,34(4):413-420. DOI:10.1038/ng1217
doi: 10.1038/ng1217
129 WESSELS M W, KUCHINKA B, HEYDANUS R, et al. Polyalanine expansion in the ZIC3 gene leading to X-linked heterotaxy with VACTERL association: a new polyalanine disorder? Journal of Medical Genetics, 2010,47(5):351-355. DOI:10.1136/jmg.2008.060913
doi: 10.1136/jmg.2008.060913
130 BATAILLE S, DEMOULIN N, DEVUYST O, et al. Association of PKD2 (polycystin 2) mutations with left-right laterality defects. American Journal of Kidney Diseases, 2011,58(3):456-460. DOI:10.1053/j.ajkd.2011.05.015
doi: 10.1053/j.ajkd.2011.05.015
131 MARION V, STUTZMANN F, GERARD M, et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet-Biedl syndrome with situs inversus and insertional polydactyly. Journal of Medical Genetics, 2012,49(5):317-321. DOI:10.1136/jmedgenet-2012-100737
doi: 10.1136/jmedgenet-2012-100737
[1] 蒋玫1,伦凤霞2,夏培艳3,黄师林4,李磊4;. 微小亚历山大藻及裸甲藻对黑鲷早期发育影响的比较[J]. 浙江大学学报(农业与生命科学版), 2010, 36(5): 585-590.