Please wait a minute...
浙江大学学报(农业与生命科学版)  2018, Vol. 44 Issue (3): 259-268    DOI: 10.3785/j.issn.1008-9209.2017.12.211
综述     
CRISPR/Cas系统的作用原理及其在作物遗传改良中的应用
舒心媛1,严旭1,蒲烨弘1,王超2,潘建伟2*
1.浙江师范大学化学与生命科学学院,浙江 金华 321004;2. 兰州大学生命科学学院,兰州 730000
Action mechanisms of CRISPR/Cas system and its application in genetic improvement of crops
SHU Xinyuan1, YAN Xu1, PU Yehong1, WANG Chao2, PAN Jianwei2*
1. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; 2. School of Life Sciences, Lanzhou University, Lanzhou 730000, China
 全文: PDF(1183 KB)   HTML (
摘要:

CRISPR/Cas系统是一种新兴的基因编辑技术,可在多个特定位点实现多基因敲除。与锌指核酸内切酶(zinc finger nucleases, ZFNs)和类转录激活因子效应物核酸酶(transcription activator-like effector nucleases,TALENs)等基因编辑技术相比,CRISPR/Cas 技术具有靶位点高突变率、易设计和操作、省时省力等特点,被广泛应用于微生物、动物和植物等生物体基因组编辑研究。CRISPR/Cas系统最初在真细菌和古细菌中被发现,是用来降解外源病毒或质粒的一类适应性免疫系统,至今已报道过多种CRISPR/Cas系统。CRISPR由一段成簇有规律的间隔短回文重复序列组成,与Cas 蛋白互作从而对基因组进行基因编辑。CRISPR/Cas系统的主要作用原理是成熟的crRNA与反式激活crRNA(tracrRNA)配对形成单向导RNA(single guide RNA, sgRNA),从而引导Cas 蛋白在特定的20 个核苷酸靶位点处切割双链DNA,由此引发2种不同的DNA修复机制——非同源重组(non-homologous end joining, NHEJ)和同源重组(homology-directed repair, HDR),其中NHEJ在断裂位点诱发碱基缺失或插入突变,因此,可针对不同靶位点设计不同sgRNA在特定的位点实现基因编辑。本文主要介绍了CRISPR/Cas系统的研究进展、作用原理及其在多种重要农作物中的应用,最后对CRISPR/Cas9系统在实际操作中出现的低频脱靶现象和未来应用前景进行了展望。

关键词: CRISPR/Cas9 系统基因编辑作物遗传改良应用    
Abstract:

CRISPR/Cas system is an emerging gene-editing technology, which can knock out multiple genes at multiple specific loci. Compared with other gene editing systems including ZFNs (zinc finger nucleases) and TALENs (transcription activator-like effector nucleases), CRISPR/Cas system possesses distinguishing advantages including higher targeting efficiency, easier to design and operate, and less time and labor, and thereby is widely applied in microbial, animal and plant genome editing researches. The CRISPR/Cas system was initially found in eubacteria and archaebacteria to be an adaptive immune system that is used to degrade exogenous viruses or plasmids. Multiple CRISPR/Cas systems have been so far reported. CRISPR is a DNA fragment with clustered regularly interspaced short palindromic repeats, which interacts with Cas protein and consequently edits the genome. The main action mechanism of CRISPR/Cas system is that matured crRNA (CRISPR-derived RNA) is hybridized with tracrRNA (trans-activating RNA) to form a single guide RNA (sgRNA), and thereby guides Cas endonuclease to cut double-strand DNA within a 20-nt short sequence, which is complementary with crRNA. Such targeted double-strand breaks activate two distinct DNA repair mechanisms including non-homologous end joining (NHEJ) and homology-directed repair (HDR). The NHEJ mechanism is easy to induce deletion or insertion mutation at the cleavage site. Thus, different sgRNAs can be designed for different target sites to perform gene editing at specific sites. This review mainly focuses on the progress and action mechanisms of CRISPR/Cas9 system and its application in a variety of important crops, and finally makes some prospects about low frequency off-target phenomenon in CRISPR/Cas9 operation and its future applications.

Key words: CRISPR/Cas9 system    genome editing    genetic improvement of crops    application
出版日期: 2018-06-28
CLC:  Q 37  
基金资助: 国家自然科学基金(31670283,91754104,31370313);浙江省自然科学基金(LY17C060001)。
通讯作者: 潘建伟(https://orcid.org/0000-0001-5155-4933)     E-mail: jwpan@lzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
舒心媛
严旭
蒲烨弘
王超
潘建伟

引用本文:

舒心媛, 严旭, 蒲烨弘, 王超, 潘建伟. CRISPR/Cas系统的作用原理及其在作物遗传改良中的应用[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 259-268.

SHU Xinyuan, YAN Xu, PU Yehong, WANG Chao, PAN Jianwei. Action mechanisms of CRISPR/Cas system and its application in genetic improvement of crops. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 259-268.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2017.12.211        http://www.zjujournals.com/agr/CN/Y2018/V44/I3/259

[1] 陈鹏飞. 无人机在农业中的应用现状与展望[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 399-406.
[2] 王少华, 赵盼盼, 刘通, 丁彪, 罗磊, 曹祖兵, 张运海, 张坤. 利用CRISPR/Cas9n技术生产抗蓝耳病的基因编辑克隆猪[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 157-161.
[3] 周国艳, 胡望雄, 徐建红*, 薛庆中*. 整合多个组学(omics)分析植物代谢产物及其功能[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 237-245.
[4] 罗安程,张春娣,杜叶红,沈琴琴. 多基质土壤混合层技术研究应用[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 460-464.
[5] 徐冰  金水虎  丁炳扬 . 内环流颗粒污泥床硝化反应器;氮损失;氨逃逸;动力学模型;灵敏度分析[J]. 浙江大学学报(农业与生命科学版), 2006, 32(3): 329-333.
[6] 周繇. 长白山区野生木本观赏树木调查[J]. 浙江大学学报(农业与生命科学版), 2004, 30(5): 524-535.
[7] 于勇  王俊  周鸣. 电子鼻技术的研究进展及其在农产品加工中的应用[J]. 浙江大学学报(农业与生命科学版), 2003, 29(5): 579-584.
[8] 包劲松  徐律平  包志毅  傅俊杰. 淀粉特性与工业应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2002, 28(6): 694-702.
[9] 王小德. 多年生花卉在植物造景中的应用[J]. 浙江大学学报(农业与生命科学版), 2000, 26(2): 225-228.