Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 430-440    DOI: 10.3785/j.issn.1008-973X.2021.03.002
    
Modelling and characteristic test for hydraulic mem-inerter device
Xiao-liang ZHANG(),Can GENG,Jia-mei NIE,Qiao GAO
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
Download: HTML     PDF(2713KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An advanced nonlinear mathematic model of the hydraulic mem-inerter device was established for engineering applications, considering the fluid mass, viscosity and dry frictions inside the device, since too many factors were ignored in the existing mathematical model. The mem-inerter prototype was fabricated and its bench test was carried on. Results show that the device can be seen as a dry friction damper under low frequency excitation, since the inertance force and the viscous damping force of the device are relatively small. The device under high frequency excitation should be modelled as a parallel connection of an ideal mem-inerter, a nonlinear viscous damper and a dry friction damper. The maximum deviations of the test values and the simulation values of the output force, inertial force and damping force were 5.70%, 9.15% and 5.47%, respectively. The maximum deviations of the test values and the simulation values of the characteristic curves for the mem-inerter and damper were 4.23% and 8.50%. Results indicate a high accuracy of the established nonlinear modeling. The mem-inerter device is proved to be able to meet the project needs, which lays a foundation for applications of the mem-inerter in vibration systems.



Key wordsinerter      memory element      nonlinear damper      nonlinear model      bench test     
Received: 03 March 2020      Published: 25 April 2021
CLC:  U 463.33  
Fund:  国家自然科学基金资助项目(51805223);江苏省六大人才高峰资助项目(2016-GDZB-097)
Cite this article:

Xiao-liang ZHANG,Can GENG,Jia-mei NIE,Qiao GAO. Modelling and characteristic test for hydraulic mem-inerter device. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 430-440.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.002     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/430


液力忆惯容器装置建模与特性试验

针对液力忆惯容器装置已有数学模型忽略因素过多的问题,考虑油液的惯性、动力学黏度以及装置内部的干摩擦,建立符合工程实际的非线性数学模型. 试制液力忆惯容器装置样机,并进行台架试验. 结果表明,当位移激励的频率较低时,液力忆惯容器装置提供的惯性力、黏滞阻尼力较小,可以近似等效为干摩擦阻尼器;当激励的频率较高时,装置等效为理想忆惯容器、非线性黏滞阻尼器、干摩擦阻尼器三元件并联. 装置的输出合力、惯性力、阻尼力试验值与仿真值最大偏差分别为5.70%、9.15%、5.47%,惯质特性曲线和寄生阻尼特性曲线的试验值与仿真值最大偏差分别为4.23%和8.50%,表明数学模型准确可靠,能够满足工程需要,为液力忆惯容器装置在减振系统中的应用奠定了基础.


关键词: 惯容器,  记忆元件,  非线性阻尼器,  非线性模型,  台架试验 
Fig.1 Schematic of hydraulic mem-inerter device
Fig.2 Model of hydraulic mem-inerter device
参数名称 符号 单位
活塞直径 D 0.1 m
活塞宽度 w 0.1 m
活塞杆直径 d 0.012 m
螺旋通道半径 rh 0.008 m
螺旋通道螺距 P 0.04 m
油液密度 ρ 1 000 kg·m?3
油液黏度 μ 0.01 Pa·s
Tab.1 Simulation parameters of mem-inerter
Fig.3 Inertial characteristic curves of mem-inerter
Fig.4 Test prototype of hydraulic mem-inerter device
名称 符号 单位
工作行程 ? 0.1 m
活塞直径 D 0.05 m
活塞杆直径 d 0.02 m
活塞宽度 w 0.13 m
螺旋通道半径 rh 0.004 8 m
螺旋通道螺距 P 0.014 m
活塞与缸壁间隙 Δ 0.01 m
螺旋槽曲率半径 Rh 0.022 5 m
油液密度 ρ 0.76 kg·m?3
样机总质量 m 6.5 kg
Tab.2 Parameters of mem-inerter test prototype
Fig.5 Working principle of test rig
Fig.6 Test rig for mem-inerter prototype
Fig.7 Dry friction damping force
Fig.8 Comparison of theoretical and experimental values of output force for hydraulic mem-inerter device
fr /Hz 观察值 输出力
理论值/kN 试验值/kN 偏差/%
0.5 上幅值 0.242 0.294 20.0
0.5 下幅值 ?0.246 ?0.278 13.1
1.0 上幅值 0.351 0.364 3.8
1.0 下幅值 ?0.367 ?0.346 5.7
1.5 上幅值 0.556 0.577 3.7
1.5 下幅值 ?0.592 ?0.613 3.5
2.0 上幅值 0.781 0.811 3.7
2.0 下幅值 ?0.847 ?0.878 3.6
2.5 上幅值 1.107 1.067 3.6
2.5 下幅值 ?1.206 ?1.167 3.2
4.0 上幅值 2.497 2.594 4.0
4.0 下幅值 ?2.767 ?2.653 4.1
Tab.3 RMS values of response amplitudes
Fig.9 Comparison of theoretical and experimental values of inertial force for hydraulic mem-inerter device
Fig.10 Diagram of velocity and momentum
Fig.11 Diagram of displacement and integral of momentum
Fig.12 Comparison of theoretical and experimental values of parasitic damping force for hydraulic mem-inerter device
Fig.13 Comparison of theoretical and experimental values of parasitic damping for hydraulic mem-inerter device
[1]   TAN D X, LIU X D, SHAN Y C Review on the inerter and its applications in vehicle damping system[J]. Chinese Journal of Automotive Engineering, 2011, 1 (5): 342- 347
[2]   CHEN L, ZHANG X, JIANG H Vehicle suspension system employing inerter based on electrical-mechanical analogy theory[J]. China Mechanical Engineering, 2009, 20 (10): 1248- 1251
[3]   CHEN M Z Q, HU Y, LI C, et al Semi-active suspension with semi-active inerter and semi-active damper[J]. IFAC Proceedings Volumes, 2014, 47 (3): 11225- 11230
doi: 10.3182/20140824-6-ZA-1003.00138
[4]   HU Y, CHEN M Z Q, XU S, et al Semi-active inerter and its application in adaptive tuned vibration absorbers[J]. IEEE Transactions on Control Systems Technology, 2016, 25 (1): 294- 300
[5]   沈钰杰, 陈龙, 杨晓峰, 等 应用惯容器提升车辆侧向稳定性的研究[J]. 汽车工程, 2018, 40 (6): 693- 698
SHEN Yu-jie, CHEN Long, YANG Xiao-feng, et al A research on the enhancement of vehicle lateral stability by applying inerter to suspension[J]. Automotive Engineering, 2018, 40 (6): 693- 698
[6]   聂佳梅, 张孝良, 江浩斌, 等 惯容器模型结构探索[J]. 机械设计与研究, 2012, 28 (1): 30- 32
NIE Jia-mei, ZHANG Xiao-liang, JIANG Hao-bin, et al Research on the inerter structure[J]. Machine Design and Research, 2012, 28 (1): 30- 32
[7]   汪若尘, 叶青, 孙泽宇, 等 基于液压惯容器的ISD悬架性能分析与试验[J]. 振动. 测试与诊断, 2016, 36 (2): 366- 371
WANG Ruo-chen, YE Qing, SUN Ze-yu, et al The analysis and experimental study of hydraulic container of inerter-spring-damper suspension performance[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36 (2): 366- 371
[8]   张孝良. 理想天棚阻尼的被动实现及其在车辆悬架中的应用[D]. 镇江: 江苏大学, 2012: 32-33.
ZHANG Xiao-liang. Passive realization of ideal skyhook damping and its applications in vehicle suspension [D]. Zhenjiang: Jiangsu University, 2012: 32-33.
[9]   陈龙, 任皓, 汪若尘, 等 液力惯容器力学性能仿真与试验研究[J]. 振动与冲击, 2014, 33 (12): 87- 92
CHEN Long, REN Hao, WANG Ruo-chen, et al Simulations and tests for mechanical properties of a hydraulic inerter[J]. Journal of Vibration and Shock, 2014, 33 (12): 87- 92
[10]   ILBEIGI S, JAHANPOUR J, FARSHIDIANFAR A A novel scheme for nonlinear displacement-dependent dampers[J]. Nonlinear Dynamics, 2012, 70 (1): 421- 434
doi: 10.1007/s11071-012-0465-4
[11]   杨富春, 周晓军, 胡宏伟 两级齿轮减速器非线性振动特性研究[J]. 浙江大学学报: 工学版, 2009, 43 (7): 1243- 1248
YANG Fu-chun, ZHOU Xiao-jun, HU Hong-wei Nonlinear vibration characteristics of two-stage gear reducer[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (7): 1243- 1248
[12]   杨先勇, 周晓军, 胡宏伟, 等 螺旋锥齿轮非线性振动特性及参数影响[J]. 浙江大学学报: 工学版, 2009, 43 (3): 505- 510
YANG Xian-yong, ZHOU Xiao-jun, HU Hong-wei, et al Nonlinear vibration characteristics of helical bevel gear system and parameters influences[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (3): 505- 510
[13]   陈昭晖, 倪一清 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1551- 1558
CHEN Zhao-hui, NI Yi-qing Real-time damping-force tracking control of self-sensing magnetorheological dampers[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1551- 1558
[14]   CHUA L Resistance switching memories are memristors[J]. Applied Physics A: Materials Science and Processing, 2011, 102 (4): 765- 783
doi: 10.1007/s00339-011-6264-9
[15]   CHUA L Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18 (5): 507- 519
doi: 10.1109/TCT.1971.1083337
[16]   STRUKOV D B, SNIDER G S, STEWART D R, et al The missing memristor found[J]. Nature, 2008, 453 (7191): 80- 83
doi: 10.1038/nature06932
[17]   DI V M, PERSHIN Y V, CHUA L O Circuit elements with memory: memristors, memcapacitors, and meminductors[J]. Proceedings of the IEEE, 2009, 97 (10): 1717- 1724
doi: 10.1109/JPROC.2009.2021077
[18]   JELTSEMA D Memory elements: a paradigm shift in Lagrangian modeling of electrical circuits[J]. IFAC Proceedings Volumes, 2012, 45 (2): 445- 450
doi: 10.3182/20120215-3-AT-3016.00078
[19]   WANG F Z A triangular periodic table of elementary circuit elements[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60 (3): 616- 623
doi: 10.1109/TCSI.2012.2209734
[20]   ZHANG X L, NIE J M, HUANG Z X, et al. Hydraulic mem-inerter device and its application: PCT/CN/2016/089855 [P]. 2017-11-16.
[21]   ZHANG X L, GAO Q, NIE J M The mem-inerter: a new mechanical element with memory[J]. Advances in Mechanical Engineering, 2018, 10 (6): 1- 13
[22]   高乔. 非线性忆惯容器及其对悬架性能的影响[D]. 镇江: 江苏大学, 2019: 65-66.
GAO Qiao. Nonlinear mem-inerter and its performance effect for a vehicle suspension [D]. Zhenjiang: Jiangsu University, 2019: 65-66.
[23]   DIXON J C. The shock absorber handbook [M]. 2nd ed. New York: Wiley, 2007: 145.
[24]   SWIFT S J, SMITH M C, GLOVER A R, et a1 Design and modelling of a fluid inerter[J]. International Journal and Control, 2013, 86 (11): 2035- 2051
doi: 10.1080/00207179.2013.842263
[25]   ALI S Pressure drop correlations for flow through regular helical coil tubes[J]. Fluid Dynamics Research, 2001, 28 (4): 1- 42
doi: 10.1016/S0169-5983(00)00034-4
[26]   CHUA L If it's pinched it's a memristor[J]. Semiconductor Science and Technology, 2014, 29 (10): 1- 42
[27]   孙晓强, 陈龙, 汪少华, 等 2级串联式ISD悬架非线性建模与参数优化[J]. 农业机械学报, 2014, 45 (6): 7- 13
SUN Xiao-qiang, CHEN Long, WANG Shao-hua, et al Nonlinear modelling and parameter of optimization of two-stage serious connected ISD suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45 (6): 7- 13
doi: 10.6041/j.issn.1000-1298.2014.06.002
[28]   罗凤, 杨忠炯, 周立强 变节距悬架弹簧对方程式赛车平顺性的影响[J]. 中国机械工程, 2017, 28 (24): 2971- 2975
LUO Feng, YANG Zhong-jiong, ZHOU Li-qiang Effects of variable pitch spring on ride comfort of formula student racings[J]. Chinese Journal of Mechanical Engineering, 2017, 28 (24): 2971- 2975
doi: 10.3969/j.issn.1004-132X.2017.24.012
[29]   孙晓强, 陈龙, 汪若尘, 等 滚珠丝杠式惯容器试验及力学性能预测[J]. 振动与冲击, 2014, 33 (14): 61- 65
SUN Xiao-qiang, CHEN Long, WANG Ruo-chen, et al Experiment and mechanical properties prediction on ball-screw inerter[J]. Journal of Vibration and Shock, 2014, 33 (14): 61- 65
[1] QU Yi-qing, HAO Zhi-yong, LI Heng, ZHENG Xu, ZHOU Nan. Acoustic performance of fabric pipe in intake system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1894-1900.
[2] KE Jun,SHI Wen ku,QIAN Chen,LI Guo ming,YUAN Ke. Prediction and matching design method for stiffness of composite leaf spring[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2103-2110.
[3] FANG Jin-hui, KONG Xiao-Wu, WEI Jian-hua. Nonlinear modeling and validation of a servo-solenoid valve[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 784-790.
[4] SUN Xiao-dong, CHEN Long, YANG Ze-bin, ZHU Huang-qiu, JI Xiao-fu. Modeling of flux linkage for the BPMSM based on LS-SVM within the
Bayesian evidence framework
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 873-877.