Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (12): 2401-2411    DOI: 10.3785/j.issn.1008-973X.2023.12.007
机械工程、能源工程     
基于多门控混合专家网络的燃烧热化学流形表征
王意存1(),邵长孝2,金台3,邢江宽1,罗坤1,4,*(),樊建人1,4
1. 浙江大学 能源高效清洁利用全国重点实验室,浙江 杭州 310027
2. 哈尔滨工业大学(深圳) 湍流控制研究所,广东 深圳 518055
3. 浙江大学 航空航天学院,浙江 杭州 310027
4. 浙江大学 上海高等研究院,上海 200120
Representation of combustion thermochemical manifolds via multi-gate mixture of experts
Yi-cun WANG1(),Chang-xiao SHAO2,Tai JIN3,Jiang-kuan XING1,Kun LUO1,4,*(),Jian-ren FAN1,4
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Center for Turbulence Control, Harbin Institute of Technology, Shenzhen Campus, Shenzhen 518055, China
3. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
4. Shanghai Institute for Advanced Study of Zhejiang University, Shanghai 200120, China
 全文: PDF(2887 KB)   HTML
摘要:

为了更好地在小火焰燃烧模型框架内实施燃烧热化学流形表征,采用多任务学习领域中的多门控混合专家网络(MMoE). 通过对三维层流喷雾射流火焰构型进行详细化学(DC)模拟,构建原始数据集. 原始数据集经过Box-Cox转换和标准化处理,以应对燃烧数据的多尺度分布问题. 对数据集进行Pearson相关系数分析,结果表明部分化学组分之间无明显的相关性. 分别构建同等参数量规模的MMoE和前馈神经网络(FNN)模型,对比分析结果表明,2种模型取得的损失值和决定系数相近,但相比FNN模型,MMoE模型在训练过程中更加稳定,且取得的定量预测结果更加准确.

关键词: 多门控混合专家网络 (MMoE)前馈神经网络(FNN)小火焰模型层流喷雾火焰燃烧数值模拟    
Abstract:

The multi-gate mixture of experts (MMoE) for multi-task learning was applied to better implement the representation of combustion thermochemical manifolds in the framework of flamelet-based combustion models. Detailed chemistry (DC) simulation of a three-dimensional laminar spray jet flame was conducted to generate the original dataset. The original dataset was preprocessed by Box-Cox transformation and Z-score normalization to deal with the multi-scale distributions of combustion data. Correlation analysis was performed on the dataset using the Pearson correlation coefficient, and the results showed that there was no significant correlation between some chemical species. The MMoE and feedforward neural network (FNN) models were constructed respectively, and the comparison and analysis showed that although both models achieved similar loss values and coefficients of determination, the MMoE model was more stable during the training process and achieved more accurate quantitative prediction results than FNN model.

Key words: multi-gate mixture of experts (MMoE)    feedforward neural network (FNN)    flamelet model    laminar spray flame    numerical simulation of combustion
收稿日期: 2023-04-15 出版日期: 2023-12-27
CLC:  TK 4  
基金资助: 国家杰出青年科学基金资助项目(51925603);国家自然科学基金资助项目(52236002)
通讯作者: 罗坤     E-mail: wangyicun@zju.edu.cn;zjulk@zju.edu.cn
作者简介: 王意存(1996—),男,博士生,从事喷雾燃烧数值模拟及模型研究. orcid.org/0000-0001-7554-5919.E-mail: wangyicun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王意存
邵长孝
金台
邢江宽
罗坤
樊建人

引用本文:

王意存,邵长孝,金台,邢江宽,罗坤,樊建人. 基于多门控混合专家网络的燃烧热化学流形表征[J]. 浙江大学学报(工学版), 2023, 57(12): 2401-2411.

Yi-cun WANG,Chang-xiao SHAO,Tai JIN,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Representation of combustion thermochemical manifolds via multi-gate mixture of experts. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2401-2411.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.007        https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2401

图 1  喷雾射流火焰构型示意图
类型 wk T/K
N2 O2 CH3OH H2O
射流 0.754 0.228 0.018 0 283
伴随流 0.758 0.142 0 0.100 1 430
表 1  喷雾射流火焰的入口参数
图 2  神经网络示意图
层类型 专家网络 塔网络
激活函数 输出类型 激活函数 输出类型
Input (None, 3) (None, 32)
Dense tanh (None, 8) tanh (None, 16)
Dense tanh (None, 16) tanh (None, 8)
Output tanh (None, 32) (None, 1)
表 2  多门控混合专家网络中的专家网络和塔网络结构
图 3  热化学量的等值线云图
图 4  组分相关系数的热力图
网络模型 L
训练集 测试集
FNN 2.694×10?4 2.728×10?4
MMoE 2.616×10?4 2.634×10?4
表 3  神经网络模型最终的损失值
图 5  神经网络模型的损失值随迭代步数的变化
图 6  FNN模型预测值与真实值的散点图
图 7  MMoE模型预测值与真实值的散点图
组分 R2
FNN训练集 FNN测试集 MMoE训练集 MMoE测试集
CH2OH 0.999 564 0.999 562 0.999 508 0.999 504
H2O 0.999 951 0.999 949 0.999 983 0.999 982
O 0.999 633 0.999 631 0.999 699 0.999 701
CH3O 0.999 608 0.999 608 0.999 631 0.999 631
HO2 0.999 430 0.999 429 0.999 470 0.999 470
CO2 0.999 850 0.999 846 0.999 851 0.999 847
OH 0.999 759 0.999 758 0.999 749 0.999 752
O2 0.999 900 0.999 900 0.999 925 0.999 924
HCO 0.999 664 0.999 668 0.999 635 0.999 635
H2O2 0.999 481 0.999 471 0.999 459 0.999 444
CH4 0.999 796 0.999 792 0.999 826 0.999 821
CH2O 0.999 686 0.999 681 0.999 694 0.999 688
CH3 0.999 744 0.999 742 0.999 777 0.999 776
CH3OH 0.999 872 0.999 871 0.999 905 0.999 905
H2 0.999 823 0.999 820 0.999 841 0.999 840
H 0.999 834 0.999 835 0.999 766 0.999 767
CO 0.999 805 0.999 800 0.999 831 0.999 825
表 4  FNN和MMoE模型的决定系数
图 8  神经网络结果与详细化学结果对比(x/D = 15位置)
图 9  神经网络结果与详细化学结果对比(x/D = 25位置)
图 10  神经网络结果与详细化学结果对比(x/D = 30位置)
图 11  新工况的温度分布云图
网络模型 L
训练集 测试集
FNN 2.415×10?4 2.383×10?4
MMoE 2.279×10?4 2.269×10?4
表 5  新工况的神经网络模型最终的损失值
图 12  新工况的神经网络模型的损失值随迭代步数的变化
1 KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3 (6): 422- 440
doi: 10.1038/s42254-021-00314-5
2 ZHOU L, SONG Y, JI W, et al Machine learning for combustion[J]. Energy and AI, 2022, 7: 100128
doi: 10.1016/j.egyai.2021.100128
3 IHME M, CHUNG W T, MISHRA A A Combustion machine learning: principles, progress and prospects[J]. Progress in Energy and Combustion Science, 2022, 91: 101010
doi: 10.1016/j.pecs.2022.101010
4 ZHU L T, CHEN X Z, BO O, et al Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors[J]. Industrial and Engineering Chemistry Research, 2022, 61 (28): 9901- 9949
doi: 10.1021/acs.iecr.2c01036
5 POPE S B Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J]. Combustion Theory and Modelling, 1997, 1 (1): 41- 63
doi: 10.1080/713665229
6 TONSE S R, MORIARTY N W, BROWN N J, et al PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics[J]. Israel Journal of Chemistry, 1999, 39 (1): 97- 106
doi: 10.1002/ijch.199900010
7 IHME M, SEE Y C Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model[J]. Combustion and Flame, 2010, 157 (10): 1850- 1862
doi: 10.1016/j.combustflame.2010.07.015
8 ZHANG Y, XU S, ZHONG S, et al Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks[J]. Energy and AI, 2020, 2: 100021
doi: 10.1016/j.egyai.2020.100021
9 KEMPF A, FLEMMING F, JANICKA J Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES[J]. Proceedings of the Combustion Institute, 2005, 30: 557- 565
doi: 10.1016/j.proci.2004.08.182
10 CHATZOPOULOS A K, RIGOPOULOS S A chemistry tabulation approach via rate-controlled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames [J]. Proceedings of the Combustion Institute, 2013, 34: 1465- 1473
doi: 10.1016/j.proci.2012.06.057
11 ZHANG T, YI Y, XU Y, et al A multi-scale sampling method for accurate and robust deep neural network to predict combustion chemical kinetics[J]. Combustion and Flame, 2022, 245: 112319
doi: 10.1016/j.combustflame.2022.112319
12 AN J, HE G, LUO K, et al Artificial neural network based chemical mechanisms for computationally efficient modeling of hydrogen/carbon monoxide/kerosene combustion[J]. International Journal of Hydrogen Energy, 2020, 45 (53): 29594- 29605
doi: 10.1016/j.ijhydene.2020.08.081
13 DING T, READSHAW T, RIGOPOULOS S, et al Machine learning tabulation of thermochemistry in turbulent combustion: an approach based on hybrid flamelet/random data and multiple multilayer perceptrons[J]. Combustion and Flame, 2021, 231: 111493
doi: 10.1016/j.combustflame.2021.111493
14 CHI C, JANIGA G, THÉVENIN D On-the-fly artificial neural network for chemical kinetics in direct numerical simulations of premixed combustion[J]. Combustion and Flame, 2021, 226: 467- 477
doi: 10.1016/j.combustflame.2020.12.038
15 FRANKE L L C, CHATZOPOULOS A K, RIGOPOULOS S Tabulation of combustion chemistry via artificial neural networks (ANNs): methodology and application to LES-PDF simulation of Sydney flame L[J]. Combustion and Flame, 2017, 185: 245- 260
doi: 10.1016/j.combustflame.2017.07.014
16 CHI C, XU X, THÉVENIN D Efficient premixed turbulent combustion simulations using flamelet manifold neural networks: a priori and a posteriori assessment[J]. Combustion and Flame, 2022, 245: 112325
doi: 10.1016/j.combustflame.2022.112325
17 IHME M, SCHMITT C, PITSCH H Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame[J]. Proceedings of the Combustion Institute, 2009, 32: 1527- 1535
doi: 10.1016/j.proci.2008.06.100
18 EMAMI M D, FARD A E Laminar flamelet modeling of a turbulent CH4/H2/N2 jet diffusion flame using artificial neural networks [J]. Applied Mathematical Modelling, 2012, 36 (5): 2082- 2093
doi: 10.1016/j.apm.2011.08.012
19 HANSINGER M, GE Y, PFITZNER M Deep residual networks for flamelet/progress variable tabulation with application to a piloted flame with inhomogeneous inlet[J]. Combustion Science and Technology, 2022, 194 (8): 1587- 1613
doi: 10.1080/00102202.2020.1822826
20 SHADRAM Z, NGUYEN T M, SIDERIS A, et al. Neural network closure models for estimating flame variables in a liquid-propellant rocket engine [C]// AIAA Scitech 2019 Forum. San Diego: [s.n.], 2019: 2008.
21 OWOYELE O, KUNDU P, AMEEN M M, et al Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames[J]. International Journal of Engine Research, 2020, 21 (1): 151- 168
doi: 10.1177/1468087419837770
22 DEMIR S, KUNDU P, NUNNO A C, et al. Deep neural network based unsteady flamelet progress variable approach in a supersonic combustor [C]// AIAA SCITECH 2022 Forum. San Diego: [s.n.], 2022: 2073.
23 KASUYA H, IWAI Y, ITOH M, et al LES/flamelet/ANN of oxy-fuel combustion for a supercritical CO2 power cycle [J]. Applications in Energy and Combustion Science, 2022, 12: 100083
doi: 10.1016/j.jaecs.2022.100083
24 OWOYELE O, KUNDU P, PAL P Efficient bifurcation and tabulation of multi-dimensional combustion manifolds using deep mixture of experts: an a priori study[J]. Proceedings of the Combustion Institute, 2021, 38 (4): 5889- 5896
doi: 10.1016/j.proci.2020.09.006
25 JACOBS R A, JORDAN M I, BARTO A G Task decomposition through competition in a modular connectionist architecture: the what and where vision tasks[J]. Cognitive Science, 1991, 15 (2): 219- 250
doi: 10.1207/s15516709cog1502_2
26 MA J, ZHAO Z, YI X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts: KDD'18 [C]// Proceeding of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S.l.]: ACM, 2018: 1930-1939.
27 ZHANG Y, WANG H, BOTH A, et al Effects of turbulence-chemistry interactions on auto-ignition and flame structure for n-dodecane spray combustion[J]. Combustion Theory and Modelling, 2019, 23 (5): 907- 934
doi: 10.1080/13647830.2019.1600722
28 HUANG Z, ZHAO M, XU Y, et al Eulerian-lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: validations and verifications[J]. Fuel, 2021, 286: 119402
doi: 10.1016/j.fuel.2020.119402
29 CROWE C T, SHARMA M P, STOCK D E The particle-source-in cell (PSI-CELL) model for gas-droplet flows[J]. Journal of Fluids Engineering, 1977, 99 (1): 325- 332
30 JENNY P, ROEKAERTS D, BEISHUIZEN N Modeling of turbulent dilute spray combustion[J]. Progress in Energy and Combustion Science, 2012, 38 (6): 846- 887
doi: 10.1016/j.pecs.2012.07.001
31 WANG Y, CAI R, SHAO C, et al A priori and a posteriori studies of a novel spray flamelet tabulation methodology considering evaporation effects[J]. Fuel, 2023, 331: 125892
doi: 10.1016/j.fuel.2022.125892
32 WANG Y C, SHAO C, LUO K, et al LES of a turbulent lifted methanol spray flame using a novel spray flamelet/progress variable model[J]. Energy, 2023, 284: 128608
33 WANG Y, SHAO C, JIN T, et al Large eddy simulation of spray combustion using the spray flamelet/progress variable model: further extension and validation[J]. Physics of Fluids, 2023, 35 (10): 105156
34 MAIONCHI D O, SANTOS F P, MELGUIZO-GAVILANES J, et al A generalised spray-flamelet formulation by means of a monotonic variable[J]. Combustion Theory and Modelling, 2021, 25 (2): 293- 314
doi: 10.1080/13647830.2020.1866215
35 WATANABE H, KUROSE R, HWANG S M, et al Characteristics of flamelets in spray flames formed in a laminar counterflow[J]. Combustion and Flame, 2007, 148 (4): 234- 248
doi: 10.1016/j.combustflame.2006.09.006
36 FRANZELLI B, VIÉ A, IHME M On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[J]. Combustion Theory and Modelling, 2015, 19 (6): 773- 806
doi: 10.1080/13647830.2015.1099740
37 O'LOUGHLIN W, MASRI A R The structure of the auto-ignition region of turbulent dilute methanol sprays issuing in a vitiated co-flow[J]. Flow Turbulence and Combustion, 2012, 89 (1): 13- 35
doi: 10.1007/s10494-012-9388-x
38 PRASAD V N, MASRI A R, NAVARRO-MARTINEZ S, et al Investigation of auto-ignition in turbulent methanol spray flames using large eddy simulation[J]. Combustion and Flame, 2013, 160 (12): 2941- 2954
doi: 10.1016/j.combustflame.2013.07.004
39 PICHLER C, NILSSON E J K Reduced kinetic mechanism for methanol combustion in spark-ignition engines[J]. Energy and Fuels, 2018, 32 (12): 12805- 12813
doi: 10.1021/acs.energyfuels.8b02136
40 BOX G E P, COX D R An analysis of transformations[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1964, 26 (2): 211- 243
doi: 10.1111/j.2517-6161.1964.tb00553.x
41 GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s.n.], 2010: 249–256.
42 KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. (2017-01-30)[2023-03-01]. https://arxiv.org/pdf/1412.6980.pdf.
43 BHATIA B, DE A, ROEKAERTS D, et al Numerical analysis of dilute methanol spray flames in vitiated coflow using extended flamelet generated manifold model[J]. Physics of Fluids, 2022, 34 (7): 075111
doi: 10.1063/5.0098705
[1] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
[2] 高正伟,金台,宋昌成,罗坤,樊建人. 基于人工神经网络的超临界小火焰模型研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1968-1977.