Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2015, Vol. 16 Issue (1): 10-17    DOI: 10.1631/jzus.B1400172
Reviews     
Epigenetic and metabolic regulation of breast cancer stem cells
Hui-xin Liu, Xiao-li Li, Chen-fang Dong
Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Breast cancer has a relatively high mortality rate in women due to recurrence and metastasis. Increasing evidence has identified a rare population of cells with stem cell-like properties in breast cancer. These cells, termed cancer stem cells (CSCs), which have the capacity for self-renewal and differentiation, contribute significantly to tumor progression, recurrence, drug resistance and metastasis. Clarifying the mechanisms regulating breast CSCs has important implications for our understanding of breast cancer progression and therapeutics. A strong connection has been found between breast CSCs and epithelial mesenchymal transition (EMT). In addition, recent studies suggest that the maintenance of the breast CSC phenotype is associated with epigenetic and metabolic regulation. In this review, we focus on recent discoveries about the connection between EMT and CSC, and advances made in understanding the roles and mechanisms of epigenetic and metabolic reprogramming in controlling breast CSC properties.

Key wordsCancer stem cells (CSCs)      Epithelial mesenchymal transition (EMT)      Epigenetic modification      Metabolic reprogramming      Breast cancer     
Received: 25 June 2014      Published: 05 January 2015
CLC:  R737.9  
Cite this article:

Hui-xin Liu, Xiao-li Li, Chen-fang Dong. Epigenetic and metabolic regulation of breast cancer stem cells. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(1): 10-17.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1400172     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2015/V16/I1/10

[1] Shi-chong Liao, Jin-xin Li, Li Yu, Sheng-rong Sun. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2017, 18(4): 334-342.
[2] Shu-min Liu, Shi-yi Ou, Hui-hua Huang. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2017, 18(2): 89-98.
[3] Ming Zhao, Xian-feng Ding, Jian-yu Shen, Xi-ping Zhang, Xiao-wen Ding, Bin Xu. Use of liposomal doxorubicin for adjuvant chemotherapy of breast cancer in clinical practice[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2017, 18(1): 15-26.
[4] Chun-xi Wang, Shu-li Guo, Li-na Han. Successful treatment of accessory breast cancer with endocrine therapy[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2017, 18(1): 70-75.
[5] Zhao-ji Liu, Gregg L. Semenza, Hua-feng Zhang. Hypoxia-inducible factor 1 and breast cancer metastasis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(1): 32-43.
[6] Xinguo Jiang. Macrophage-produced IL-10 limits the chemotherapy efficacy in breast cancer[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(1): 44-45.
[7] Wei Wang, Yun-ping Luo. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(1): 18-31.
[8] Xinguo Jiang. Harnessing the immune system for the treatment of breast cancer[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(1): 1-15.
[9] Sheereen Tarannum, Zarina Arif, Khursheed Alam. Binding of circulating autoantibodies in breast cancer to native and peroxynitrite-modified RNA[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(1): 40-46.
[10] Lin-run Wang, Guo-bing Zhang, Jian Chen, Jun Li, Ming-wei Li, Nong Xu, Yang Wang, Jian-zhong Shentu. RRM1 gene expression in peripheral blood is predictive of shorter survival in Chinese patients with advanced non-small-cell lung cancer treated by gemcitabine and platinum[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(3): 174-179.
[11] Jie-hong Zhao, Ji-shun Zhang, Yi Wang, Ren-gang Wang, Chun Wu, Long-jiang Fan, Xue-liang Ren. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(11): 935-942.
[12] Yi ZHENG, Jing ZHANG, Zhen-zhen XU,Jian-ming SHENG, Xiao-chen ZHANG, Hao-hao WANG, Xiao-dong TENG, Xiao-jiao LIU, Jiang CAO, Li-song TENG. Quantitative profiles of the mRNAs of ER-α and its novel variant ER-α36 in breast cancers and matched normal tissues[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(2): 144-150.
[13] Ching-hung LIN, Huang-chun LIEN, Fu-chang HU, Yen-shen LU, Sung-hsin KUO, Ling-chu WU, San-lin YOU, Ann-lii CHENG, King-jen CHANG, Chiun-sheng HUANG. Fractionated evaluation of immunohistochemical hormone receptor expression enhances prognostic prediction in breast cancer patients treated with tamoxifen as adjuvant therapy[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(1): 1-9.
[14] Shan-zhi GU, Xin-han ZHAO, Ling-xiao ZHANG, Li LI, Zhi-yu WANG, Min MENG, Gai-li AN. Anti-angiogenesis effect of generation 4 polyamidoamine/vascular endothelial growth factor antisense oligodeoxynucleotide on breast cancer in vitro[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(3): 159-167.
[15] Li-song TENG, Yi ZHENG, Hao-hao WANG. BRCA1/2 associated hereditary breast cancer[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2008, 9(2): 85-89.