Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2017, Vol. 18 Issue (3): 163-166    DOI: 10.1631/jzus.A17NT001
New technology     
Soft magnetic composites with enhanced performance and their key production technologies
Mi Yan, Chen Wu
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Soft magnetic composites (SMCs) contain metallic magnetic powders embedded in an insulation matrix, and are usually prepared by procedures including powder production, insulation coating, binding, compaction, and annealing. They have attracted extensive interest as fundamental electric and electronic components in the fields of energy, information, transportation, and national defense. With the development of electric and electronic devices with properties suitable for high frequency, large power, energy saving, and being electromagnetically compatible, the demand and requirements for SMCs become significantly higher. The SMC industry in China used to lag far behind overseas competitors with a huge technological gap. The main domestic products were Fe SMCs with only a small amount of alloy SMCs. Such SMCs exhibited low magnetization and unsatisfactory DC-bias properties with double the loss compared to the overseas products. Since 2002, Prof. Mi YAN’s team at Zhejiang University, China has carried out long-term cooperation with related enterprises, achieved key breakthroughs, and invented a series of new SMCs with enhanced performance and low loss. The team has also achieved large-scale production and wide application of the new SMCs, pushing the domestic industry into a world-leading position.

Key wordsUnified modeling language (UML)      Integration      Modeling      System analysis and design     
Received: 19 January 2017      Published: 07 March 2017
Cite this article:

Mi Yan, Chen Wu. Soft magnetic composites with enhanced performance and their key production technologies. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 163-166.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A17NT001     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2017/V18/I3/163

[1] Jin Wang, Ting Ge, Guo-dong Lu, Fei Li. A study of 3D finite element modeling method for stagger spinning of thin-walled tube[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 646-666.
[2] Jie Xu, Chao Zhou. A simple model for the hysteretic elastic shear modulus of unsaturated soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 589-596.
[3] Yao-zhi Luo, Chao Yang. A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(5): 331-350.
[4] Chao Yang, Yan-bin Shen, Yao-zhi Luo. An efficient numerical shape analysis for light weight membrane structures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 255-271.
[5] Chao-bang Yao, Wen-cai Dong. A fast integration method for translating-pulsating source Green’s function in Bessho form[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 108-119.
[6] Hai-bo Huo, Yi Ji, Xin-jian Zhu, Xing-hong Kuang, Yu-qing Liu. Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 829-839.
[7] David Poto?nik, Bojan Dol?ak, Miran Ulbin. GAJA: 3D CAD methodology for developing a parametric system for the automatic (re)modeling of the cutting components of compound washer dies[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(5): 327-340.
[8] Zhe Xu, Jian-guo Cai, Bing-cai Pan. Mathematically modeling fixed-bed adsorption in aqueous systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(3): 155-176.
[9] Zhi-guo He, Gokmen Tayfur, Qi-hua Ran, Hao-xuan Weng. Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 110-119.
[10] Jia-jin Zhou, Kui-hua Wang, Xiao-nan Gong, Ri-hong Zhang. Bearing capacity and load transfer mechanism of a static drill rooted nodular pile in soft soil areas[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(10): 705-719.
[11] Wei Lu, Yan-yong Xiang. Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 958-968.
[12] Jian Zhou, Qi-wei Jian, Jiao Zhang, Jian-jun Guo. Coupled 3D discrete-continuum numerical modeling of pile penetration in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(1): 44-55.
[13] Young T. Chae, Kwang Ho Lee, Jae Sung Park. Improved thermal performance of a hydronic radiant panel heating system by the optimization of tube shapes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 428-437.
[14] Ying-li Zhao, Jie Shi, Wen-quan Cao, Mao-qiu Wang, Gang Xie. Kinetics of austenite grain growth in medium-carbon niobium-bearing steel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 171-176.
[15] Gintaris Kaklauskas, Viktor Gribniak, Rokas Girdzius. Average stress-average strain tension-stiffening relationships based on provisions of design codes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 731-736.