Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2017, Vol. 18 Issue (5): 393-412    DOI: 10.1631/jzus.A1600124
Articles     
Numerical model and multi-objective optimization analysis of vehicle vibration
Peng Guo, Jun-hong Zhang
State Key Laboratory of Engine, Tianjin University, Tianjin 300072, China; Mechanical Engineering Department, Tianjin University Renai College, Tianjin 301636, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  It is crucial to conduct a study of vehicle ride comfort using a suitable physical model, and a precise and effective problem-solving method is necessary to describe possible engineering problems to obtain the best analysis of vehicle vibration based on the numerical model. This study establishes different types of vehicle models with different degrees of freedom (DOFs) that use different types of numerical methods. It is shown that results calculated using the Hamming and Runge-Kutta methods are nearly the same when the system has a small number of DOFs. However, when the number is larger, the Hamming method is more stable than other methods. The Hamming method is multi-step, with four orders of precision. The research results show that this method can solve the vehicle vibration problem. Orthogonal experiments and multi-objective optimization are introduced to analyze and optimize the vibration of the vehicle, and the effects of the parameters on the dynamic characteristics are investigated. The solution F1 (vertical acceleration root mean square of the vehicle) reduces by 0.0352 m/s2, which is an improvement of 7.22%, and the solution F2 (dynamic load coefficient of the tire) reduces by 0.0225, which is an improvement of 6.82% after optimization. The study provides guidance for the analysis of vehicle ride comfort.

Key wordsVehicle model      Hamming method      Runge-Kutta method      Design of experiment      Multi-objective optimization     
Received: 30 March 2016      Published: 03 May 2017
CLC:  TH133.31  
Cite this article:

Peng Guo, Jun-hong Zhang. Numerical model and multi-objective optimization analysis of vehicle vibration. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 393-412.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1600124     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2017/V18/I5/393


基于数值算法的车辆动力学模型及数值求解方法精度的对比研究

目的:通过采用不同数值方法求解不同的车辆动力学模型,为车辆动力学模型研究提供参考;结合正交试验和多目标优化算法来分析各个参数对车辆性能的影响权重,采用多目标优化算法进行车辆动力学多目标优化分析,为车辆的设计提供参考依据。
创新点:研究不同数值方法的求解精度,为车辆动力学求解方法提供新途径;采用正交试验设计研究车辆各参数的影响权重,为车辆设计提供参考;采用多目标优化算法设计车辆,能兼顾车辆多个方面的性能。
方法:采用不同动力学求解算法、正交试验设计和多目标优化分析方法。
结论:1. 基于不同数值求解算法的研究表明,Hamming法要优于Newmark法和有限差分法,四阶Hamming法的精度不如龙格库塔法;2. 正交试验可得到各参数对车辆动力学的影响权重,但忽略了参数间的交互效应;3. 经过多目标优化设计,衡量车辆振动性能的两个指标分别减少了7.22%和6.82%。

关键词: Hamming法,  龙格库塔法,  数值算法,  动力仿真 
[1]   Bae, D.S., Lee, J.K., Cho, H.J., et al., 2000. An explicit integration method for realtime simulation of multibody vehicle models. Computer Methods in Applied Mechanics and Engineering, 187(1-2):337-350.
doi: 10.1016/S0045-7825(99)00138-3
[2]   Baumal, A., McPhee, J., Calamai, P., 1998. Application of genetic algorithms to the design optimization of an active vehicle suspension system. Computer Methods in Applied Mechanics and Engineering, 163(1-4):87-94.
doi: 10.1016/S0045-7825(98)00004-8
[3]   Campbell, C., 1981. Automotive Suspensions. Chapman Hall, London, UK.
[4]   Ekoru, J.E.D., Pedro, J.O., 2013. Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6):401-416.
doi: 10.1631/jzus.A1200161
[5]   Gündoğdu, O., 2007. Optimal seat and suspension design for a quarter car with driver model using genetic algorithms. International Journal of Industrial Ergonomics, 37(4):327-332.
doi: 10.1016/j.ergon.2006.11.005
[6]   Gupta, T.C., 2007. Identification and experimental validation of damping ratios of different human body segments through anthropometric vibratory model in standing posture. Journal of Biomechanical Engineering, 129(4):566-574.
doi: 10.1115/1.2720917
[7]   He, Z., Sun, Y., Zhang, G., 2015. Tribilogical performances of connecting rod and by using orthogonal experiment, regression method and response surface methodology. Applied Soft Computing, 29:436-449.
doi: 10.1016/j.asoc.2015.01.009
[8]   Hegazy, S., Rahnejat, H., Hussain, K., 1999. Multi-body dynamics in full-vehicle handling analysis. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 213(1):19-31.
doi: 10.1243/1464419991544027
[9]   Ikenaga, S., Lewis, F.L., Campos, J., et al., 2000. Active suspension control of ground vehicle based on a full-vehicle model. American Control Conference, 6:4019-4024.
[10]   Jamali, A., Shams, H., Fasihozaman, M., 2014. Pareto multi-objective optimum design of vehicle-suspension system under random road excitations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 228(3):282-293.
doi: 10.1177/1464419314531757
[11]   Kadir, Z.A., Hudha, K., Ahmad, F., et al., 2012. Verification of 14DOF full vehicle model based on steering wheel input. Applied Mechanics and Materials, 165:109-113.
doi: 10.4028/www.scientific.net/amm.165.109
[12]   Mirzaei, M., Hassannejad, R., 2007. Application of genetic algorithms to optimum design of elasto-damping elements of a half-car model under random road excitations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 221(4):515-526.
doi: 10.1243/14644193JMBD101
[13]   Nasir, M.Z.M., Hudha, K., Amir, M.Z., et al., 2012. Modelling, simulation and validation of 9 DOF vehicles model for automatic steering system. Applied Mechanics and Materials, 165:192-196.
doi: 10.4028/www.scientific.net/amm.165.192
[14]   Nigam, S.P., Malik, M., 1987. A study on a vibratory model of a human body. Journal of Biomechanical Engineering, 109(2):148-153.
doi: 10.1115/1.3138657
[15]   Rao, S.S., 1996. Engineering Optimization. John Wiley & Sons, New York, USA.
[16]   Reddy, P.S., Ramakrishna, A., Ramji, K., 2015. Study of the dynamic behaviour of a human driver coupled with a vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(2):226-234.
doi: 10.1177/0954407014537642
[17]   Schmitke, C., Morency, K., McPhee, J., 2008. Using graph theory and symbolic computing to generate efficient models for multi-body vehicle dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 222(4):339-352.
doi: 10.1243/14644193JMBD160
[18]   Soleymani, M., Montazeri-Gh, M., Amiryan, R., 2012. Adaptive fuzzy controller for vehicle active suspension system based on traffic conditions. Scientia Iranica, 19(3):443-453.
doi: 10.1016/j.scient.2012.03.002
[19]   Srinivas, N., Deb, K., 1994. Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 2(3):221-248.
doi: 10.1162/evco.1994.2.3.221
[20]   Sulaiman, S., Samin, P.M., Jamaluddin, H., et al., 2012. Modeling and validation of 7-DOF ride model for heavy vehicle. International Conference on Automotive, Mechanical and Materials Engineering, p.108-112.
[21]   Taghirad, H., Esmailzadeh, E., 1998. Automobile passenger comfort assured through LQG/LQR active suspension. Journal of Vibration and Control, 4(5):603-618.
doi: 10.1177/107754639800400504
[22]   Tamboli, J.A., Joshi, S.G., 1999. Optimum design of passive suspension system of a vehicle subjected to actual random road excitations. Journal of Sound and Vibration, 219(2):193-205.
doi: 10.1006/jsvi.1998.1882
[23]   Thite, A.N., Banvidi, S., Ibicek, T., et al., 2011. Suspension parameter estimation in the frequency domain using a matrix inversion approach. Vehicle System Dynamics, 49(12):1803-1822.
doi: 10.1080/00423114.2010.544319
[24]   Vaddi, P.K.R., Kumar, C.S., 2014. A non-linear vehicle dynamics model for accurate representation of suspension kinematics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(6):1002-1014.
doi: 10.1177/0954406214542840
[25]   von Chappuis, H., Mavros, G., King, P.D., et al., 2013. Prediction of impulsive vehicle tyre-suspension response to abusive drive-over-kerb manoeuvres. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 227(2):133-149.
doi: 10.1177/1464419312469756
[26]   Yu, F., Lin, Y., 2005. Vehicle System Dynamics. Machinery Industry Press, Beijing, China (in Chinese).
[27]   Yuen, T.J., Foong, S.M., Ramli, R., 2014. Optimized suspension kinematic profiles for handling performance using 10-degree-of-freedom vehicle model. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 228(1):82-99.
doi: 10.1177/1464419313516436
[28]   Zong, C., Song, P., Hu, D., 2011. Estimation of vehicle states and tire-road friction using parallel extended Kalman filtering. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(6):446-452.
doi: 10.1631/jzus.A1100056
[29]   Zuo, L., Nayfeh, S.A., 2003. Structured H2 optimization of vehicle suspensions based on multi-wheel models. Vehicle System Dynamics, 40(5):351-371.
doi: 10.1076/vesd.40.5.351.17914
[1] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[2] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[3] José D. Martínez-Morales, Elvia R. Palacios-Hernández, Gerardo A. Velázquez-Carrillo. Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 657-670.
[4] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[5] Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Víctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 420-432.
[6] Ning-yun Lu, Gui-xia Gong, Yi Yang, Jian-hua Lu. Multi-objective process parameter optimization for energy saving in injection molding process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 382-394.
[7] Mohsen GITIZADEH, Mohsen KALANTAR. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 478-487.
[8] Wei-guo ZHU, Xiang-zhong BAI. Bifurcation and chaos of a 4-side fixed rectangular thin plate in electromagnetic and mechanical fields[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(1): 62-71.
[9] Jun-hai SHI, Zhi-dan ZHONG, Xin-jian ZHU, Guang-yi CAO. Robust design and optimization for autonomous PV-wind hybrid power systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 401-409.
[10] ZHANG Yan-hu, YAN Wen-jun, LU Jian-ning, ZHAO Guang-zhou. Multi-objective robust controller synthesis for discrete-time systems with convex polytopic uncertain domain[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(Supplement 1): 87-93.
[11] ZHAO Bo, CAO Yi-jia. Multiple objective particle swarm optimization technique for economic load dispatch[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(5): 420-427.
[12] YAN Wen-jun, ZHANG Sen-lin. Mixed Gl2/GH2 multi-channel multi-objective control synthesis for discrete time systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(7): 827-834.